Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T01:26:39.889Z Has data issue: false hasContentIssue false

Liberation of I4CO2from [14C]adipic acid and [14C]octanoic acid by adult rats during riboflavin deficiency and its reversal

Published online by Cambridge University Press:  09 March 2007

C. J. Bates
Affiliation:
MRC Dunn Nutrition Unit, Milton Road, Cambridge CB4 IXJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of the present study was to test the hypothesis that the already well-established mitochondria1 lesion in fatty acid oxidation in riboflavin-deficient experimental animals, might be accompanied by an alteration in vivo in the kinetics of oxidation of labelled adipic acid. This dicarboxylic acid was chosen for testing as a metabolic probe because a block in its oxidation was already apparent from urine analysis of riboflavin-deficient animals, whereas the oxidation of medium- or long-chain monocarboxylic acids seemed to be little affected by deficiency in vivo. Female adult Norwegian hooded rats fed on purified diets containing either 15 mg riboflavin/kg diet (controls) or about 0.4 mg/kg (riboflavin-deficient) received an intragastric dose of either [l,6-I4C] adipic acid or [l-'4C] octanoic acid. Expired carbon dioxide was then collected in an alkaline trap over 3 h, for determination of radioactivity.This test was repeated at intervals for up to 2 weeks following riboflavin repletion of the deficient animals, and in riboflavin-dosed controls. Whereas the rate and extent of ['4C]octanoic acid oxidation was not significantly affected by the deficiency or repletion, the extent of [I4C]adipic acid oxidation was markedly and significantly increased during repletion of the deficient animals. The time-course indicated a temporary overshoot, followed by a slow return to the control values over 1–2 weeks. Adipate oxidation was also much less affected by a preceding period of overnight starvation, than was octanoate oxidation. Thus, adipic acid (or a related metabolic probe) may have appropriate properties for the design of a functional test of fatty acid oxidation efficiency, during riboflavin deficiency or allied metabolic conditions in human subjects.

Type
Lipid Metebolism
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Allison, F. (1987). Abnormal urine organic acid excretion and the sudden infant death syndrome. Annals of Clinical Biochemistry 24, Suppl. 1, 3134Google Scholar
Bates, C. J. (1987). Human riboflavin requirements, and metabolic consequences of deficiency in man and animals. World Review of Nutrition and Dietetics 50, 215265CrossRefGoogle Scholar
Bates, C. J. (1989). Metabolism of [14C]adipic acid in riboflavin –deficient rats: a test in vivo for fatty acid oxidation. Journal of Nutrition 119, 887891CrossRefGoogle ScholarPubMed
Bergseth, S., Hokland, B. M. & Bremer, J. (1988). Metabolism of dicarboxylic acids in vivo and in the perfused kidney of the rat. Biochimica et Biophysica Acta 961,103109.CrossRefGoogle ScholarPubMed
Brady, P. S., Feng, Y.–X. & Brady, L. J. (1988). Transcriptional regulation of carnitine palmitoyl transferase synthesis in riboflavin deficiency in rats. Journal of Nutrition 118, 11281136CrossRefGoogle Scholar
Brady, P. S., Knoeber, C. M. & Brady, L. J. (1986). Hepatic mitochondrial and peroxisomal oxidative capacity in riboflavin deficiency: effect of age, dietary fat and starvation in rats. Journal of Nutrition 116, 19921999CrossRefGoogle ScholarPubMed
de Visser, M., Scholte, H. R., Schutgens, R. B. A, Bolhuis, P. A., Luyt-Houwen, I. E. M., Vaandrager-Verduin, M. H. M., Veder, H. A. & Oey, P. L. (1986). Riboflavin–responsive lipid–storage myopathy and glutaric aciduria type II of early adult onset. Neurology 36, 367372CrossRefGoogle ScholarPubMed
Draye, J.– P., Veitch, K., Vamecq, J. & Van hoof, F. (1988). Comparison of the metabolism of dodecane-dioic acid in vivo in control, riboflavin-deficient and clofibrate-treated rats. European Journal of Biochemistry 178, 183189.CrossRefGoogle Scholar
Duerden, J. M. & Bates, C. J. (1985 a).Effect of riboflavin deficiency on reproductive performance and on biochemical indices of riboflavin status in the rat. British Journal of Nutrition 53, 97105.CrossRefGoogle ScholarPubMed
Duerden, J. M. & Bates, C. J. (1985 b).Effect of riboflavin deficiency on lipid metabolism of liver and brown adipose tissue of sucking rat pups. British Journal of Nutrition 53, 107115.CrossRefGoogle Scholar
Goodman, S. I. (1981). Organic aciduria in the riboflavin–deficient rat. American Journal of Clinical Nutrition 34, 24342437.CrossRefGoogle ScholarPubMed
Green, A., Marshall, T. G., Bennett, M. J., Gray, R. G. F. & Pollitt, R. J. (1985). Riboflavin–responsive ethylmalonic–adipic–aciduria. Journal of Inherited and Metabolic Diseases 8, 6770.CrossRefGoogle ScholarPubMed
Greenfield, H., Briggs, G. M., Watson, R. H. J. & Yudkin, J. (1969). An improved diet for carbohydrate studies with rats: some criticisms of experimental diets. Proceedings of the Nutrition Society 28, 43A44A.Google ScholarPubMed
Gregersen, N. (1985). Riboflavin–responsive defects of βoxidation. journal of Inherited and Metabolic Diseases 8, Suppl.1, 6569.CrossRefGoogle ScholarPubMed
Gregersen, N., Christensen, M. F., Christensen, E. & Kolvraa, S. (1986). Riboflavin–responsive multiple acyl–CoA dehydrogenation deficiency. Assessment of 3 years of riboflavin treatment. Acta Paediatrica Scandinavica 75, 676681.CrossRefGoogle ScholarPubMed
Gregersen, N. & Kolvraa, S. (1982). The occurrence of C8-C10, dicarboxylic acids, ethylmalonic acid, 5–hydroxycaproic acid, butyrylglycine, isovalerylglycine, isobutyrylglycine, 2–methylbutyrylglycine and glutaric acid in the urine of riboflavin–deficient rats. Journal of lnherited and Metabolic Diseases 5, Suppl. 1, 1718.CrossRefGoogle Scholar
Gregersen, N., Wintzensen, H., Christensen, S. K., Christensen, M. F., Brandt, N. J. & Rasmussen, K. (1982). C8–C10–dicarboxylic aciduria: investigations of a patient with riboflavin response multiple acyl–CoA dehydrogenation defects. Pediatric Research 16, 861868.CrossRefGoogle ScholarPubMed
Harpey, J.– P., Charpentier, C., Goodman, S. I., Darbois, Y., Lefaebvre, G. & Sebbah, J. (1983). Multiple acyl–CoA dehydrogenase deficiency occurring in pregnancy and caused by a defect in riboflavin metabolism in the mother. Journal of Pediatrics 103, 394398.CrossRefGoogle ScholarPubMed
Hoppel, C., Dimarco, J. P. & Tandler, B. (1979). Riboflavin and rat hepatic cell structure and function. Journal of Biological Chemistry 254, 41644170.CrossRefGoogle ScholarPubMed
Howat, A. J., Bennett, M. J., Variend, S., Shaw, L. & Engel, P. C. (1985). Defects of metabolism of fatty acids in the sudden infant death syndrome. British Medical Journal 290, 17711773.CrossRefGoogle ScholarPubMed
Kolvraa, S. & Gregersen, N. (1986). In vitro studies on the oxidation of medium–chain dicarboxylic acids in ratliver. Biochimica et Biophysica Acta 876, 515525.CrossRefGoogle Scholar
Mooy, P. D., Przyrembel, H., Giesberts, M. A. H., Scholte, H. R., Blom, W. & van gelderen, H. H. (1984). Glutaric aciduria type II: treatment with riboflavin, carnitine and insulin. European Journal of Pediatrics 143,9295.CrossRefGoogle ScholarPubMed
Mortensen, P. B. (1981). C8C10,–dicarboxylic aciduria in starved, fat–fed and diabetic rats receiving decanoic acid or medium chain triacylglycerol. An in vivo measure of the rate of β–oxidation of fatty acids. Biochimica et Biophysica Acta 664, 349355.CrossRefGoogle Scholar
Mortensen, P. B.& Gregersen, N. (1982). The biological origin of ketotic dicarboxylic aciduria. 11. In vivo and in vitro investigations of the βoxidation of C8C10,–dicarboxylic acids in unstarved, starved and diabetic rats. Biochimica et Biophysica Acta 710, 477484.CrossRefGoogle Scholar
Olpin, S. E. & Bates, C. J. (1982). Lipidmetabolism in riboflavin–deficient rats. 2. Mitochondrial fatty oxidation and the microsomal desaturation pathway. British Journal of Nutrition 47, 589596.CrossRefGoogle Scholar
Patterson, B. E. (1987). Metabolic studies of riboflavin deficiency in the rat and premature infants. PhD Thesis, University of Cambridge.Google Scholar
Patterson, B. E. & Bates, C. J. (1989). Liberation of 14CO2 from 14C–fatty acids by riboflavin–deficient sucking rat pups: a study of 14C–octanoate and 14C–palmitate oxidation in vivo. International Journal of Vitamin and Nutrition Research 59,293299.Google ScholarPubMed
Powers, H. J., Bates, C. J., Prentice, A. M., Lamb, W. H., Jepson, M. & Bowman, H. (1983). The relative effectiveness of iron and iron with riboflavin in correcting a microcytic anaemia in men and children in rural Gambia. HumanNutrition: Clinical Nutrition 37C, 413425Google ScholarPubMed
Preiss, B. & Block, K. (1964). ωOxidation of long chain fatty acids in rat liver, Journal of Biological Chemistry 239, 8588.CrossRefGoogle ScholarPubMed
Ross, N. S. & Hoppel, C. L. (1987). Acyl–CoA dehydrogenase activity in the riboflavin–deficient rat. Biochemical Journal 244, 387391.CrossRefGoogle ScholarPubMed
Sakurai, T., Miyazawa, S., Furuta, S. & Hashimoto, T. (1982). Riboflavin deficiency and β –oxidation systems in rat liver. Lipids 17 598604.CrossRefGoogle ScholarPubMed
Vamecq, J., de hoffman, E. & van hoof, F. (1985 a). Mitochondria1 and peroxisomal metabolism of glutaryl– CoA. European Journal of Biochemistry 146, 663–469.CrossRefGoogle Scholar
Vamecq, J., de hoffmann, E. & van hoof, F. (1985 b).The microsomal dicarboxylyl–CoA synthetase. Biochemical Journal 230, 683693.CrossRefGoogle ScholarPubMed
Veitch, R. K., Draye, J – P., van hoof, F.& Sherratt, H. S. A. (1988). Effects of riboflavin deficiency and clofibrate treatment on the five acyl–CoA dehydrogenases in rat liver mitochondria. Biochemical Journal 254, 477481CrossRefGoogle ScholarPubMed
Veitch, R. K., Meredith, E. J., Turnbull, D. M. & Sherratt, H. S. A. (1985). Mitochondria1 oxidations and tissue carnitine concentrations in riboflavin–deficient rats. Biochemical Society Transactions 13, 895896.CrossRefGoogle Scholar
Veitch, R. K. & van hoof, F. (1985). Morphometric and biochemical studies of the liver in riboflavin–deficient rats fed ciprofibrate. Biochemical Society Transactions 13, 894895.CrossRefGoogle Scholar