Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T16:40:50.036Z Has data issue: false hasContentIssue false

Large bowel fermentation in rats eating processed potatoes

Published online by Cambridge University Press:  09 March 2007

J. C. Mathers
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
Lindsay D. Dawson
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Four diets were prepared in which cooked potatoes provided approximately 0.8 of the dry matter (DM) and all the polysaccharides. The potatoes were either boiled conventionally (unprocessed) or prepared by rehydrating a commercial ‘instant’ potato product with boiling water. The diets were fed to rats (six per diet) immediately after preparation or after storage at 4° for 48 h and observations made on site and extent of digestion and large bowel (LB) fermentation. All diets were equally well digested (overall means 0.95 and 0.96 for DM and organic matter (OM) respectively) with a significant proportion of this digestion occurring in the LB. More OM flowed to the LB with the ‘instant’ (0.18 of intake) than with the unprocessed potato diets (0.13 of intake) and was associated with markedly different fermentation patterns. When compared with rats fed on the unprocessed potato diets, those given ‘instant’ potatoes had smaller caecums with much shorter transit times, lower caecal pH, higher total volatile fatty acid (VFA) concentrations and a greater molar proportion of butyrate in these VFA. Storage of the diets for 48 h at 4° had relatively smaller effects on these variables. Possible mechanisms for the observed effects and implications for tissue metabolism and health are discussed. In addition, a simple and apparently novel method for quantifying coprophagy is proposed.

Type
Metabolic and Physiological Effects of Fermentation
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Anderson, I. H., Levine, A. S. & Levitt, M. D. (1981). Incomplete absorption of the carbohydrate in all-purpose wheat flour. New England Journal of Medicine 304, 891892.CrossRefGoogle ScholarPubMed
Chapman, R. W., Sillery, J. K., Graham, M. M. & Saunders, D. R. (1985). Absorption of starch by healthy ileostomates: effect of transit time and of carbohydrate load. American Journal of Clinical Nutrition 41, 12441248.CrossRefGoogle ScholarPubMed
Cummings, J. H. & Branch, W. J. (1982). Postulated mechanisms whereby fiber may protect against large bowel cancer. In Dietary Fiber in Health and Disease, pp. 313325 [Vahouny, G. V. and Kritchevsky, D., editors]. London: Plenum Press.CrossRefGoogle Scholar
Demeyer, D. I. & Van Nevel, C. J. (1975). Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In Digestion and Metabolism in the Ruminant, pp. 366382 [McDonald, I. W. and Warner, A. C. I, editors]. Armidale: University of New England Publishing Unit.Google Scholar
Englyst, H. N. & Cummings, J. H. (1985). Digestion of the polysaccharides of some cereal foods in the human small intestine. American Journal of Clinical Nutrition 42, 778787.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1986). Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine. American Journal of Clinical Nutrition 44, 4250.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1987 a). Digestion of the polysaccharides of potato in the small intestine of man. American Journal of Clinical Nutrition 45, 423431.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1987 b). Resistant starch, a ‘new’ food component: a classification of starch for nutritional purposes. In Cereals in a European Context, pp. 221233 [Morton, I. D., editor]. Chichester: Ellis Horwood Ltd.Google Scholar
Englyst, H. N., Hay, S. & Macfarlane, G. T. (1987). Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiological Letters 45, 163171.CrossRefGoogle Scholar
Faichney, G. J. (1975). The use of markers to partition digestion within the gastro-intestinal tract of ruminants. In Digestion and Metabolism in the Ruminant, pp. 277291 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Fajardo, G. & Hörnicke, H. (1989). Problems in estimating the extent of coprophagy in the rat. British Journal of Nutrition 62, 551561.CrossRefGoogle ScholarPubMed
Goodlad, J. S. & Mathers, J. C. (1987). Digesta flow from the ileum and transit time through the caecum of rats given diets containing graded levels of peas. Proceedings of the Nutrition Society 46, 149A.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1988). Effects of food carbohydrates on large intestinal fermentation in vitro. Proceedings of the Nutrition Society 47, 176A.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1990). Large bowel fermentation in rats given diets containing raw peas (Pisum sativum). British Journal of Nutrition 64, 569587.CrossRefGoogle ScholarPubMed
Goodlad, R. A., Ratcliffe, B., Fordham, J. P. & Wright, N. A. (1989). Does dietary fibre stimulate intestinal epithelial cell proliferation in germ free rats? Gut 30, 820825.CrossRefGoogle ScholarPubMed
Hörnicke, H. & Björnhag, G. (1980). Coprophagy and related strategies for digesta utilization. In Digestive Physiology and Metabolism in Ruminants, pp. 707730 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Lai, J. C. K., Silk, D. B. A. & Williams, R. (1977). Plasma short-chain fatty acids in fulminant hepatic failure. Clinica Chimica Acta 78, 305310.CrossRefGoogle ScholarPubMed
Leng, R. A. (1970). Formation and production of volatile fatty acids in the rumen. In Physiology of Digestion and Metabolism in the Ruminant, pp. 406421 [Philipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Levitt, M. D., Hirsch, P., Fetzer, C. A., Sheahan, M. & Levine, A. S. (1987). H2 excretion after ingestion of complex carbohydrates. Gastroenterology 92, 383389.CrossRefGoogle ScholarPubMed
Mallett, A. K., Bearne, C. A., Young, P. J., Rowland, I. R. & Berry, C. (1988). Influence of starches of low digestibility on the rat caecal microflora. British Journal of Nutrition 60, 597604.CrossRefGoogle ScholarPubMed
Mathers, J. C., Fernandez, F., Hill, M. J., McCarthy, P. T., Shearer, M. J. & Oxley, A. (1990). Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. British Journal of Nutrition 63, 639652.CrossRefGoogle ScholarPubMed
Mathers, J. C. & Fotso Tagny, J.-M. (1989). Diurnal variation in large bowel metabolism in rats given diets with and without wheat bran. Proceedings of the Nutrition Society 48, 52A.Google Scholar
Rémésy, C. & Demigné, C. (1989). Specific effects of fermentable carbohydrates on blood urea flux and ammonia absorption in the rat cecum. Journal of Nutrition 119, 560565.CrossRefGoogle ScholarPubMed
Roediger, W. E. W. (1980). Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa of man. Gut 21, 793798.CrossRefGoogle ScholarPubMed
Roediger, W. E. W. (1982). Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424429.CrossRefGoogle ScholarPubMed
Ross, G. J. S. (1980). Maximum Likelihood Program. Harpenden: Rothamsted Experimental Station.Google Scholar
Sakata, T. (1987). Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition 58, 95103.CrossRefGoogle ScholarPubMed
Samson, F. E., Dahl, N. & Dahl, D. R. (1956). A study on the narcotic actions of the short chain fatty acids. Journal of Clinical Investigation 35, 12911298.CrossRefGoogle Scholar
Scheppach, W., Cummings, J. H., Branch, W. J. & Schrezenmeir, J. (1988 a). Effect of gut-derived acetate on oral glucose tolerance in man. Clinical Science 75, 355361.CrossRefGoogle ScholarPubMed
Scheppach, W., Fabian, C., Sachs, M. & Kasper, H. (1988 b). The effect of starch malabsorption on fecal short-chain fatty acid excretion in man. Scandinavian Journal of Gastroenterology 23, 755759.CrossRefGoogle ScholarPubMed
Scheppach, W., Wiggins, H. S., Halliday, D., Self, R., Howard, J., Branch, W. J., Schrezenmeir, J. & Cummings, J. H. (1988 c). Effect of gut-derived acetate on glucose turnover in man. Clinical Science 75, 363370.CrossRefGoogle ScholarPubMed
Seal, C. J. & Mathers, J. C. (1989). Intestinal zinc transfer by everted gut sacs from rats given diets containing different amounts and types of dietary fibre. British Journal of Nutrition 62, 151163.CrossRefGoogle ScholarPubMed
Stephen, A. M., Haddad, A. C. & Phillips, S. F. (1983). Passage of carbohydrate into the colon. Direct measurements in humans. Gastroenterology 85, 589595.CrossRefGoogle ScholarPubMed
Thompson, A. (1970). Rat metabolism cage. Journal of the Institute of Animal Technicians 21, 1221.Google Scholar
Trauner, D. A., Nyhan, W. L. & Sweetman, L. (1975). Short-chain organic acidemia and Reye's syndrome. Neurology 25, 296298.CrossRefGoogle ScholarPubMed
Walker, C. O., McCandless, D. W., McGarry, J. D. & Schenker, S. (1970). Cerebral energy metabolism in short-chain fatty acid-induced coma. Journal of Laboratory and Clinical Medicine 76, 569583.Google ScholarPubMed
Woolfe, J. A. (1987). The Potato in the Human Diet. Cambridge: Cambridge University Press in collaboration with the International Potato Centre.CrossRefGoogle Scholar
Wyatt, G. M., Horn, N., Gee, J. M. & Johnson, I. T. (1988). Intestinal microflora and gastrointestinal adaptation in the rat in response to non-digestible dietary polysaccharides. British Journal of Nutrition 60, 197207.CrossRefGoogle ScholarPubMed
Zieve, L. & Nicoloff, D. M. (1975). Pathogenesis of hepatic coma. Annual Review of Medicine 26, 143157.CrossRefGoogle ScholarPubMed