Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T05:23:48.372Z Has data issue: false hasContentIssue false

Iron speciation at physiological pH in media containing ascorbate and oxygen

Published online by Cambridge University Press:  09 March 2007

Clare Dorey
Affiliation:
Division of Clinical Cell Biology, MRC Clinical Research Centre, Watford Rd, Harrow, Middlesex
Chris Cooper
Affiliation:
Division of Biomolecular Sciences, King's College, University of London, Campden Hill Rd, London W8 7AH
Dominic P. E. Dickson
Affiliation:
Department of Physics, University of Liverpool, Liverpool L69 3BX
John F. Gibson
Affiliation:
Department of Chemistry, Imperial College, London SW7 2AY
Robert J. Simpson
Affiliation:
Department of Clinical Biochemistry, King's College School of Medicine and Dentistry, Bessemer Rd, London SE5 9PJ
Timothy J. Peters
Affiliation:
Department of Clinical Biochemistry, King's College School of Medicine and Dentistry, Bessemer Rd, London SE5 9PJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stability of iron ascorbate solutions was investigated, under both anaerobic and aerobic conditions, with the Fe2+ and Fe3+ indicators, respectively ferrozine and mimosine, at different pH values. The species present under the differing conditions were investigated by electron paramagnetic resonance (EPR) and Mössbauer spectroscopy and by gel-filtration chromatography. At physiological pH (6·8–7·4) iron ascorbate solutions rapidly form mononuclear chelatable Fe3+ species as reflected by indicator studies and EPR. Mössbauer spectroscopy fails to detect any Fe2+ species. EPR studies show a time-dependent decrease in rhombic Fe3+, particularly in oxygenated buffers, consistent with a conversion to polynuclear Fe. O2 uptake studies show that the conversion of Fe2+ to Fe3+ in Fe–ascorbate solutions at pH > 7·0 was accompanied by rapid O2 consumption but preceded depletion of ascorbate. Addition of high concentrations of mannitol (50–200 mM) reduces the O2 consumption and partly stabilizes the rapidly chelatable Fe form. Gel filtration studies show that the oxidation of Fe–ascorbate solutions at pH 7·4 is accompanied by an increase in the apparent relative molecular mass of the Fe, presumably due to Fe polymer formation. These studies indicate the inherent instability of Fe–ascorbate solutions above neutral pH and clearly have important implications in the use of ascorbate in studies of Fe physiology.

Type
Iron Intake and Status
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Acheson, L. S. & Schultz, S. G. (1972). Iron influx across the brush border membrane of rabbit duodenum: effects of anemia and iron loading. Biochimica et Biophysica Acta 255, 479483.CrossRefGoogle ScholarPubMed
Baynes, R. D. & Bothwell, T. H. (1990). Iron deficiency. Annual Reviews of Nutrition 10, 133148.CrossRefGoogle ScholarPubMed
Breidenbach, A. W., Cambel, P. & Ray, F. E. (1952). Gastric ascorbic acid in the gastritic rat. Proceedings of the Society for Experimental Biology and Medicine 80, 144146.CrossRefGoogle ScholarPubMed
Brise, H. & Hallberg, L. (1962). Effect of ascorbic acid on iron absorption. Acta Medica Scandinavica 171, Suppl. 376, 5158.CrossRefGoogle Scholar
Brown, E. B. & Justus, B. W. (1958). In vitro absorption of radioiron by everted pouches of rat intestine. American Journal of Physiology 194, 319326.CrossRefGoogle ScholarPubMed
Conrad, M. E. & Schade, S. G. (1968). Ascorbic acid chelates in iron absorption: a role for hydrochloric acid and bile. Gastroenterology 55, 3545.CrossRefGoogle ScholarPubMed
Cox, T. M. & O'Donnell, M. W. (1982) Studies on the control of iron uptake by rabbit small intestine. British Journal of Nutrition 47, 251258.CrossRefGoogle ScholarPubMed
Dryhurst, G., Kadish, K. M., Scheller, F. & Renneberg, R. (1982). Ascorbic acid. Biological Electrochemistry 1, 256278.CrossRefGoogle Scholar
Forth, W. & Rummel, W. (1973). Iron absorption. Physiology Reviews 53, 724792.CrossRefGoogle ScholarPubMed
Gibbs, C. R. (1976). Characterization and application of ferrozine iron reagent as a ferrous iron indicator. Analytical Chemistry 48, 11971201.CrossRefGoogle Scholar
Gibson, J. F. (1980). In ESR and NMR of Paramagnetic Species in Biological and Related Systems. NATO Advanced Study Institute Series. Series C, Maths andphysical Sciences pp. 225253 [Bertini, I. and Drago, R. S., editors] Dordrecht, Holland: Reidel.Google Scholar
Gorman, J. E. & Clydesdale, F. M. (1983). The behaviour and stability of iron-ascorbate complexes in solution. Journal of Food Sciences 48, 12171226.CrossRefGoogle Scholar
Helbock, H. L. & Saltman, P. (1967). The transport of iron by rat intestine. Biochimica et Biophysica Acta 135, 979990.CrossRefGoogle ScholarPubMed
Hopping, I. M. & Ruliffson, W. S. (1966). Roles of citric and ascorbic acids in enteric iron absorption in rats. American Journal of Physiology 210, 13161320.CrossRefGoogle ScholarPubMed
Howard, J. & Jacobs, A. (1972). Iron transport by rat small intestine. In vitro effect of body iron status. British Journal of Haematology 23, 595603.CrossRefGoogle ScholarPubMed
Hungerford, D. M. & Linder, M. C. (1983). Interactions of pH and ascorbate in intestinal iron absorption. Journal of Nutrition 113, 26152622.CrossRefGoogle ScholarPubMed
Hyde, A. (1957). Absorption of radioiron perfused through the duodenum of the rat. American Journal of Physiology 191, 265270.CrossRefGoogle ScholarPubMed
Jacobs, P., Bothwell, T. H. & Charlton, R. W. (1966). Intestinal iron transport studies using a loop of gut with an artificial circulation. American Journal of Physiology 210, 694700.CrossRefGoogle ScholarPubMed
Johnson, G., Jacobs, P. & Purves, L. R. (1983). Iron binding proteins of iron absorbing rat intestinal mucosa. Journal of Clinical Investigation 71, 14671476.CrossRefGoogle ScholarPubMed
Manis, J. G. & Schachter, D. (1962). Active transport of iron by intestine: features of the two-step mechanism. American Journal of Physiology 203, 7380.CrossRefGoogle Scholar
Marx, J. J. M. & Stiekman, J. (1985). Mucosal uptake, mucosal transfer and retention of a therapeutic dose of iron. European Journal of Clinical Pharmacology 23, 335338.CrossRefGoogle Scholar
Nojeim, S. J. & Clydesdale, F. M. (1981). Effect of pH and ascorbic acid on iron valence in model systems and in foods. Journal of Food Science 46, 606616.CrossRefGoogle Scholar
Pearson, W. N. & Reich, M. (1965). In vitro studies of Fe59 absorption by everted intestinal sacs of rat. Journal of Nutrition 87, 117124.CrossRefGoogle Scholar
Peters, T. J., Raja, K. B., Simpson, R. J. & Snape, S. (1988). Mechanisms and regulation of intestinal iron absorption. Annals of the New York Academy of Sciences 526, 141147.CrossRefGoogle ScholarPubMed
Plug, C. M., Dekker, D. & Blut, H. (1984). Complex stability of ferrous ascorbate in aqueous solution and its significance for iron absorption. Pharmaceutische Weekblad 6, 245248.CrossRefGoogle ScholarPubMed
Raja, K. B., Simpson, R. J. & Peters, T. J. (1992). Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochimica et Biophysica Acta 1135, 141146.CrossRefGoogle ScholarPubMed
Rathbone, B. J., Johnson, A. W., Wyatt, J. I., Kelleher, J., Heatley, R. V. & Losowsky, M. S. (1989). Ascorbic acid: a factor concentrated in human gastric juice. Clinical Sciences 76, 237241.Google ScholarPubMed
Ruliffson, W. S. & Hopping, J. M. (1963). Maturation, iron deficiency and ligands in enteric radioiron transport in vitro. American Journal of Physiology 204, 171175.CrossRefGoogle ScholarPubMed
Savin, M. A. & Cook, J. D. (1978). Iron transport by isolated rat intestinal mucosal cells. Gastroenterology 75, 688694.CrossRefGoogle ScholarPubMed
Schneider, W. (1987). The fate of iron compounds in the gastrointestinal tract. Coordination-chemical facts. Arzneiniittel Forschung 37, 9295.Google ScholarPubMed
Sheehan, R. G. (1976). Unidirectional uptake of iron across intestinal brush border. Americun Journal of Physiology 231, 14381444.CrossRefGoogle ScholarPubMed
Simpson, R. J. & Peters, T. J. (1987). Transport of Fe2+ across lipid bilayers: possible role of free fatty acids. Biochimica et Biophysica Acta 898, 187195.CrossRefGoogle ScholarPubMed
Simpson, R. J. & Peters, T. J. (1990). Forms of soluble iron in mouse stomach and duodenal lumen: significance for mucosal uptake. British Journal of Nutrition 63, 7989.CrossRefGoogle ScholarPubMed
Simpson, R. J., Raja, K. B. & Peters, T. J. (1986). Fe2+ uptake by mouse intestinal mucosa in vivo and by isolated intestinal border membrane vesicles. Biochimica et Biophysica Acta 860, 229235.CrossRefGoogle ScholarPubMed
Simpson, R. J., Raja, K. B. & Peters, T. J. (1989). Mechanisms of intestinal brush border iron transport. Advances in Esperimental Biology and Medicine 249, 2734.CrossRefGoogle ScholarPubMed
Taqui Khan, M. M. & Martell, A. E. (1967). Metal ion and metal chelate catalyzed oxidation of molecular oxygen. 1. Cupric and ferric ion catalyzed oxidation. Journal of the American Chemical Society 89, 41764184.CrossRefGoogle Scholar
Thompson, A. B. R. & Valberg, L. S. (1971). Kinetics of intestinal iron absorption in the rat: effect of cobalt. American Journal of Physiology 220, 10801085.CrossRefGoogle Scholar
Wien, E. M. & Van Campen, D. R. (1991). Ferric iron absorption in rats: relationship to iron status, endogenous sulfhydryl and other redox components in the intestinal lumen. Journal of Nutrition 121, 825831.CrossRefGoogle ScholarPubMed
Weir, M., Peters, T. J. & Gibson, J. F. (1985). Electron spin resonance studies of splenic ferritin and haemosiderin. Biochimica et Biophysica Acta 828, 298305.CrossRefGoogle ScholarPubMed