Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T09:06:06.397Z Has data issue: false hasContentIssue false

Iron metabolism in copper-deficient rats

Published online by Cambridge University Press:  26 July 2012

H. R. Marston
Affiliation:
Division of Nutritional Biochemistry, Commonwealth Scientific and Industrial Research Organization, University of Adelaide, South Austral. 5000, Australia
Shirley H. Allen
Affiliation:
Division of Nutritional Biochemistry, Commonwealth Scientific and Industrial Research Organization, University of Adelaide, South Austral. 5000, Australia
S. L. Swaby
Affiliation:
Division of Nutritional Biochemistry, Commonwealth Scientific and Industrial Research Organization, University of Adelaide, South Austral. 5000, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of ingestion of diets deficient in both copper and iron on storage of these elements and on the red cell indices have been studied in rats.

2. Injection of Cu into rats whose stores of Cu had been virtually exhausted resulted in a temporary increase in the concentration of plasma Fe and depletion of the Fe stored in the liver. Storage of Fe in the spleen seemed to be affected somewhat differently from that in the liver.

3. Fe injected into Cu-deficient rats was transported to storage sites but, although the plasma Fe concentration was presumably transiently increased thereby, there was no lasting effect.

4. The hypotheses that Cu mediates in the release of Fe from ferritin and that of Osaki, Johnson & Frieden (1966) that caeruloplasmin promotes the rate of Fe-saturation of apotransferrin are discussed.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1971

References

REFERENCES

Aisen, P., Aasa, R., Malmström, B. G. & Vänngård, T. (1967). J. biol. Chem. 242, 2484.Google Scholar
Alfrey, C. P. Jr, Lynch, E. C. & Whitley, C. E. (1967). J. Lab. clin. Med. 70, 419.Google Scholar
Allen, S. H. (1956). Biochem. J. 63, 461.Google Scholar
Bates, G. W., Billups, C. & Saltman, P. (1967 a). J. biol. Chem. 242, 2810.Google Scholar
Bates, G. W., Billups, C. & Saltman, P. (1967 b). J. biol. Chem. 242, 2816.Google Scholar
Beutler, E., Fairbanks, V. F. & Fahey, J. L. (1963). Clinical Disorders of Iron Metabolism. New York and London: Grune & Stratton.Google Scholar
Billups, C., Pape, L. & Saltman, P. (1967). J. biol. Chem. 242, 4284.Google Scholar
Brown, E. B. (1963). Am. J. clin. Nutr. 12, 205.Google Scholar
Cheney, B. A., Lothe, K., Morgan, E. H., Sood, S. K. & Finch, C. A. (1967). Am. J. Physiol. 212, 376.Google Scholar
Coons, C. M. (1964). A. Rev. Biochem. 33, 459.Google Scholar
Crosby, W. H. & Furth, F. W. (1956). Blood 11, 380.Google Scholar
Dacie, J. V. & Lewis, S. M. (1963). Practical Haematology 3rd ed.London: J. & A. Churchill Ltd.Google Scholar
Darcel, C., le, Q. (1961). Can. J. comp. Med. 25, 129.Google Scholar
Deutsch, W. (1936). J. Physiol., Lond. 87, 56P.Google Scholar
Dreosti, I. E. & Quicke, G. V. (1968). Br. J. Nutr. 22, 1.Google Scholar
Gabuzda, T. G. & Pearson, J. (1968). Nature, Lond. 220, 1234.CrossRefGoogle Scholar
Giovanniello, T. J. & Peters, T. Jr (1963). Stand. Meth. clin. Chem. 4, 139.Google Scholar
Greenough, W. B. III, Peters, T. Jr & Thomas, E. D. (1962). J. clin. Invest. 41, 1116.Google Scholar
Gross, F. (editor) (1964). Iron Metabolism. International Symposium, Aix-en-Provence, France, 1963: sponsors Ciba.Google Scholar
Harris, J. W. (1963). The Red Cell. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Hart, E. B., Steenbock, H., Waddell, J. & Elvehjem, C. A. (1928). J. biol. Chem. 77, 797.Google Scholar
Hedenstedt, S. (1947). Acta chir. scand. 95, suppl.128.Google Scholar
Labbe, R. F. & Hubbard, N. (1961). Biochim. biophys. Acta 52, 130.Google Scholar
Marston, H. R. (1952). Physiol. Rev. 32, 66.Google Scholar
Marston, H. R. & Allen, S. H. (1967). Nature, Lond. 215, 645.Google Scholar
Mazur, A., Baez, S. & Shorr, E. (1955). J. biol. Chem. 213, 147.Google Scholar
Morgan, E. H. (1961). Aust. J. exp. Biol. med. Sci. 39, 371.CrossRefGoogle Scholar
Osaki, S., Johnson, D. A. & Frieden, E. (1966) J. biol. Chem. 241, 2746.CrossRefGoogle Scholar
Pape, L., Multani, J. S., Stitt, C. & Saltman, P. (1968 a). Biochemistry, Easton 7, 606.CrossRefGoogle Scholar
Pape, L., Multani, J. S., Stitt, C. & Saltman, P. (1968 b). Biochemistry, Easton 7, 613.Google Scholar
Reichlin, M. & Harrington, W. J. (1960). Blood 16, 1298.CrossRefGoogle Scholar
Reith, E. J. (1961). J. Cell Biol. 9, 825.Google Scholar
Rice, E. W. (1963). Stand. Meth. clin. Chem. 4, 57.Google Scholar
Rimington, C. (1958). Rev. pure appl. Chem. 8, 129.Google Scholar
Salera, U., Magnanelli, P., d'Avino, R., Zecca, I. & Matcovich, A. L. (1961). Proc. 8th Congr. Eur. Soc. Haematol., Vienna p. 240a.Google Scholar
Smith, J. A., Drysdale, J. W., Goldberg, A. & Munro, H. N. (1968). Br. J. Haemat. 14, 79.Google Scholar
Summerson, W. H. (1938). J. biol. Chem. 123, cxix.Google Scholar
Thirayothin, P. & Crosby, W. H. (1962). J. clin. Invest. 41, 1206.Google Scholar
Underwood, E. J. (1962). Trace Elements in Human and Animal Nutrition 2nd ed.New York and London: Academic Press Inc.Google Scholar
Wynter, C. V. A. & Williams, R. (1968). Lancet ii, 534.CrossRefGoogle Scholar
Zail, S. S., Charlton, R. W., Torrance, J. D. & Bothwell, T. H. (1964). J. clin. Invest. 43, 670.Google Scholar