Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T04:32:19.880Z Has data issue: false hasContentIssue false

The intestinal transport of zinc studied using brush-border-membrane vesicles from the piglet

Published online by Cambridge University Press:  09 March 2007

Peter Blakeborough
Affiliation:
Department of Food Quality and Human Nutrition, AFRC Institute of Food Research, Reading Laboratory, Shinfield, Reading RG2 9AT
Dallyn N. Salter
Affiliation:
Department of Pig Nutrition and Production, Animal and Grassland Research Institute, Shinfield, Reading RG2 9AQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Brush-border-membrane vesicles were prepared from piglet small intestines and the uptake of 65Zn was studied using a rapid filtration assay. The mechanism of 65Zn uptake was complex and two processes were identified.

2. In the first process, 65Zn uptake was rapid, reached equilibrium in 5–15 min and had an optimum pH of 7.5. The uptake was saturable and involved both binding to, and transport across, the membrane. The initial phase of 65Zn uptake (1 min incubation) approached saturation at high levels of substrate 65Zn and a Michaelis-Menten constant (Km) of 67.0 µM was calculated. Maximum uptake at equilibrium was approximately 100 nmol/mg protein. Cupric, ferrous and ferric ions had no effect on the uptake, but cadmium ions inhibited it competitively. The results are consistent with a carrier-mediated process, possibly involving a protein receptor in the membrane which is specific for Zn and elements close to it in the periodic table. Lactoferrin stimulated 65Zn uptake by approximately 20% when pre-incubated with 65Zn at a concentration of 0.01 µg/ml. It had no significant effect on 65Zn uptake at higher concentrations or when pre-incubated with brush-border-membrane vesicles.

3. The second mechanism of 65Zn uptake was linear with respect to time and involved binding to the membrane only. It was inhibited by all divalent and trivalent metal ions tested and is probably a passive binding process.

4. The results are discussed with respect to the use of brush-border-membrane vesicles in examining the role of nutrient interactions and their effect on the biological availability of nutrients.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Antonson, D. L., Barak, A. J. & Vanderhoof, J. A. (1979). Journal of Nutrition 109, 142147.CrossRefGoogle Scholar
Becker, W. M. & Hoeckstra, W. G. (1970). In Intestinal Absorption of Metal Ions, Trace Elements and Radionuclides, pp. 229256 [Skoryna, S. C. and Waldron-Edwards, D, editors]. New York: Pergamon Press.Google Scholar
Bensadoun, A. & Weinstein, D. (1976). Analytical Biochemistry 70, 241250.CrossRefGoogle Scholar
Blakeborough, P., Gurr, M. I. & Salter, D. N. (1986). British Journal of Nutrition 55, 209217.CrossRefGoogle Scholar
Blakeborough, P. & Salter, D. N. (1986). In Trace Elements in Man and Animals, TEMA 5, pp. 420423 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Blakeborough, P. & Salter, D. N. & Gurr, M. I. (1983). Biochemical Journal 209, 505512.CrossRefGoogle Scholar
Booth, A. G. & Kenny, A. J. (1974). Biochemical Journal 142, 575581.CrossRefGoogle Scholar
Braude, R. & Newport, M. J. (1973). British Journal of Nutrition 29, 447455.CrossRefGoogle Scholar
Clarke, R. M. & Hardy, R. N. (1971). Journal of Anatomy 108, 6377.Google Scholar
Cornish-Bowden, A. & Eisenthal, R. (1974). Biochemical Journal 139, 721730.CrossRefGoogle Scholar
Davies, N. T. (1980). British Journal of Nutrition 43, 189203.CrossRefGoogle Scholar
Dodds, W. J. (1982). Federation Proceedings 41, 247256.Google Scholar
Eisenthal, R. & Cornish-Bowden, A. (1974). Biochemical Journal 139, 715720.CrossRefGoogle Scholar
Evans, G. W. & Johnson, E. C. (1980). Journal of Nutrition 110, 10761080.CrossRefGoogle Scholar
Flagstad, T. (1981). Journal of Nutrition 111, 19961999.CrossRefGoogle Scholar
Fransson, G.-B., Thorén-Tolling, K., Jones, B., Hambraeus, L. & Lönnerdal, B. (1983). Nutrition Research 3, 373–384.Google Scholar
George, D. E. & Lebenthal, E. (1981). In Textbook of Gastroenterology and Nutrition in Infancy, pp. 295320 [Lebenthal, E., editor]. New York: Raven Press.Google Scholar
Giroux, E. & Prakash, N. J. (1977). Journal of Pharmaceutical Science 66, 391392.CrossRefGoogle Scholar
Hopfer, U., Nelson, K., Perrotto, J. & Isselbacher, K. I. (1973). Journal of Biological Chemistry 248, 2532.CrossRefGoogle Scholar
Hurley, L. S., Keen, C. L., Young, H. M. & Lönnerdal, B. (1982). Federation Proceedings 41, 2982.Google Scholar
Kessler, M., Acuto, O., Storelli, C., Murer, H., Müller, M. & Semenza, G. (1978). Biochimica et Biophysica Acta 506, 136154.CrossRefGoogle Scholar
Kowarski, S., Blair-Stanek, C. S. & Schachter, D. (1974). American Journal of Physiology 226, 401407.CrossRefGoogle Scholar
Lever, J. E. (1980). CRC Critical Reviews of Biochemistry 7, 187246.CrossRefGoogle Scholar
Masson, P. L., Heremans, J. F., Schonne, E. & Crabbe, P. A. (1969). Protides of the Biological Fluids 16, 633638.CrossRefGoogle Scholar
Menard, M. P. & Cousins, R. J. (1983 a). Journal of Nutrition 113, 14341442.CrossRefGoogle Scholar
Menard, M. P. & Cousins, R. J. (1983 b). Journal of Nutrition 113, 16531656.CrossRefGoogle Scholar
Murer, H. & Kinne, R. (1980). Journal of Membrane Biology 55, 8195.CrossRefGoogle Scholar
Oberleas, D., Muhrer, M. E. & O'Dell, B. L. (1966). Journal of Nutrition 90, 5662.CrossRefGoogle Scholar
Sachs, G., Jackson, R. J. & Rabon, E. C. (1980). American Journal of Physiology 238, G151G164.Google Scholar
Sandström, B., Cederblad, A. & Lönnerdal, B. (1983 a). American Journal of Diseases of Children 137, 726729.Google Scholar
Sandström, B., Keen, C. L. & Lönnerdal, B. (1983 b). American Journal of Clinical Nutrition 38, 420428.CrossRefGoogle Scholar
Smith, K. T., Cousins, R. J., Silbon, B. L. & Failla, M. L. (1978). Journal of Nutrition 108, 18491857.CrossRefGoogle Scholar
Vincent, J. C. & Thellier, M. (1983). Biophysical Journal 41, 2328.CrossRefGoogle Scholar
Weigand, E. & Kirchgessner, M. (1976). Nutrition and Metabolism 20, 307313.CrossRefGoogle Scholar
Wien, E. M. & Schwartz, R. (1985). In Nutritional Bioavailability of Calcium, ACS Symposium Series no. 275, pp. 116 [Kies, C., editor]. Washington DC: American Chemical Society.Google Scholar