Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T16:56:03.977Z Has data issue: false hasContentIssue false

Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet

Published online by Cambridge University Press:  09 March 2007

N. Fontaine
Affiliation:
Laboratoire de Nutrition et Sécurité Alimentaire, INRA CRJ, 78352 Jouy-en-Josas Cédex, France
J. C. Meslin
Affiliation:
Laboratoire de Nutrition et Sécurité Alimentaire, INRA CRJ, 78352 Jouy-en-Josas Cédex, France
S. Lory
Affiliation:
Unité d'Ecologie et Physiologie du Système Digestif, INRA CRJ, 78352 Jouy-en-Josas Cédex, France
C. Andrieux
Affiliation:
Unité d'Ecologie et Physiologie du Système Digestif, INRA CRJ, 78352 Jouy-en-Josas Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A colorimetric method was used on water-soluble much extracted from mucosal scrapings and contents of the caecum and the colon of five germ-free (GF) rats and five heteroxenic (HE) rats harbouring a hnmao flora (GF rats d a t e d with a human flora). These rats were fed on a diet containing either 100 g sucrose/kg or 100 g inulin/kg. Histological stains, periodic acid–Schiff, alcian blue pH 2·5 and alcian blue pH 0·5 were used to discriminate between neutral, acidic and acidic sulphated mucins respectively. Spectrocolorimetric assays led to a calculated absorbance value for 1 mg of the initial much extract. Each much type was compared between treatments. The caecal contents of GF rats contained more acidic mucin than sulphomucin, which was present in the same proportion as neutral mucin. Their colonic contents contained more acidic mucins than sulphomucin, which in turn was more abundant than neutral mucin. Their caecal mucosa mucin distribution differed from that of the contents: very little acidic much was present and neutral and dphomucin proportions were of the same order of magnitude. Inulin increased the amount of neutral much in the caecal contents and of sulphated mucios in the colonic contents and increased the amounts of neutral and acidic mucins in the caecal mucwa. Mucin distribution in the HE rats was very different from that in the GF rats: the caecal contents contained a high proportion of acidic much and very little sulphomucin. The same distribution of mucins was observed in the colonic contents. The caecal mucaw contained less acidic much and more sulphomucin than the caecal contents. Inulin decreased acidic mucins and increased sulphated much in the caecal contents and increased neutral and sulphated mucins in the colonic contents. Inulin increased sulphomucin in the caecal m u m and decreased acidic much in the caecal and colonic mucosas. The very low amount of mucin that was recovered in the colonic mucosa suggests that, in the presence of the bacterial flora and associated with inulin in the diet, much was extensively released from the mucosa to the colonic lumen. This might be related to the bacterial metabolites produced

Type
Dietary inulin and intestinal mucin in the rat
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Allen, A., Bell, A., Mantle, M. & Pearson, J. P. (1982). The structure and physiology of gastrointestinal mucus. In Mucus in Health and Disease, vol. 2, pp. 115133 & [Chantler, E., Elder, J. and Elstein, M., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Andremont, A., Raibaud, P., Tancrtde, C., Duval-Iflah, Y, & Ducluzeau, R, (1985). The use of germ-free mice associated with human f& al flora as an animal model to study entehc bacterial interactions. In Bacterial Diarrhea Diseases, vol. 4, pp. 219228 [Takeda, Y. and Miwatani, T., editors]. Tokyo: KTK Scientific Publishers.CrossRefGoogle Scholar
Andrieux, C. & Sacquet, E. (1986). Effects of amylomaize starch on mineral metabolism in the adult rat: role of the microflora. Journal of Nutrition 116, 991998.CrossRefGoogle ScholarPubMed
Andrieux, C., Lory, S., Dufour-Lescoat, C., De Baynast, R. & Szylit, O. (1991). Physiological effect of inulin in germ-free rats and in heteroxenic rats inoculated with a human flora. Food Hydrocolloids 5, 4956.CrossRefGoogle Scholar
Asano, T. (1967). Inorganic ions in cecal content of gnotobiotic rats. Proceedings of the Society for Experimental Biology and Medicine 124, 424430.CrossRefGoogle ScholarPubMed
Bacon, J.S.D. & Edelman, J. (1951). The carbohydrates of Jerusalem artichoke and other compositae. Biochemical Journal 48, 114126.CrossRefGoogle ScholarPubMed
Bensadoun, A. & Weinstein, D. (1976). Assay of protein in the presence of interfering materials. Analytical Biochemistry 70, 241250.CrossRefGoogle ScholarPubMed
Cassidy, M. M., Lightfoot, F. G., Grau, L. E., Story, J. A., Kritchevsky, D. & Vahouny, G. V. (1981). Effect of chronic intake of dietary fibers on the ultrastructural topography of rat jejunum and colon: a scanning electron microscopy study. American Journal of Clinical Nutrition 34, 218228.CrossRefGoogle Scholar
Cassidy, M. M., Satchithanandam, S., Calvert, R. J., Vahouny, G. V. & Leeds, A. R. (1990). Quantitative and qualitative adaptations in gastrointestinal mucin with dietary fiber feeding. In Dietary Fiber: Chemistry, Physiology and Health Efects, pp. 6788 [Kritchevsky, D., Bonfield, C. and Anderson, J.W., editors]. New York and London: Plenum Press.CrossRefGoogle Scholar
Cole, C. B., Fuller, R., Mallett, A. K. & Rowland, I. R. (1985). The influence of the host on expression of intestinal microbial enzyme activities involved in the metabolism of foreign compounds. Journal of Applied Bacteriology 59, 549553.CrossRefGoogle Scholar
Debure, A., Colombel, J. F., Flourié, B., Rautureau, M. & Rambaud, J. C. (1989). Comparaison del'implantation et de l'activité métabolique d'une flore fécale de rat et d'une flore fécale humaine inoculées chez le rat axénique (Implantation and metabolic activity of rat and human faecal bacterial flora administered to germ-free rats). Gastroenthrologie Clinique et Biologique 13, 2531.Google Scholar
Dirks, P. & Freeman, H. J. (1987). Effects of differing purified cellulose, pectin and hemicellulose fiber diets on mucosal morphology in the rat small and large intestine. Clinical and Investigative Medicine 10, 3238.Google ScholarPubMed
Donowitz, M. & Binder, H. J. (1979). Mechanism of fluid and electrolyte secretion in the germ-free rat cecum. American Journal of Digestive Diseases 24, 551559.Google ScholarPubMed
Ecknauer, R., Sircar, B. & Johnson, L. R. (1981). Effect of dietary bulk on small intestinal morphology and cell renewal in the rat. Gastroenterology 81, 781786.CrossRefGoogle ScholarPubMed
Enss, M. L., Grosse-Siestrup, H., Schmidt-Wittig, U. & Gärtner, K. (1992). Changes in the colonic mucins of germ-free rats in response to the introduction of a normal rat microbial flora. Journal of Experimental Animal Science 35, 110119.Google Scholar
Enss, M. L., Schmidt-Wittig, U., Höner, K., Kownatzki, R. & Gärtner, K. (1994). Mechanical challenge causes alterations of rat colonic mucosa and released mucins. Journal of Experimental Animal Science 36, 128140.Google ScholarPubMed
Filipe, I. (1979). Mucins in the human gastrointestinal epithelium: a review. Investigations in Cell Pathology 2, 195216.Google ScholarPubMed
Flourié, B., Pellier, P., Florent, C., Marteau, P., Pochart, P. & Rambaud, J. C. (1991). Site and substrate for methane production in human colon. American Journal of Physiology 260, G752G757.Google ScholarPubMed
Fontaine, N. & Meslin, J. C. (1994). Mise au point d'un dosage sélectif des différents types de mucines gastro- intestinales: utilisation de réactifs histochimiques (Spectrocolorimetric assay for the 3 types of gastrointestinal mucin using histochemical stains). Reproduction, Nutrition, Développement 34, 237247.CrossRefGoogle Scholar
Gustafsson, B. E., Carlstedt-Duke, B. & Nord, C. E. (1981). Mucosal related intestinal bacteria and host metabolism. In Recent Advances in Germfree Research. Proceedings of the VIIth International Symposium on Gnotobiology, pp. 249254 [Sasaki, S., Ozawa, A. and Hashimoto, K., editors]. Tokyo: Tokai University Press.Google Scholar
Hoskins, L. C. & Zamcheck, N. (1968). Bacterial degradation of gastrointestinal mucins: I. Comparison of mucus constituents in the stools of germ-free and conventional rats. Gastroenterology 54, 210217.CrossRefGoogle ScholarPubMed
Huang, C. B., Lundin, E., Zhang, J. X., Stenling, R., Hallmans, G. & Reuterving, C. O. (1990). Dietary fibre and colonic mucin change in golden hamster. A morphometrical and histochemical study. In Dietary Fibre: Chemical and Biological Aspects, pp. 243247 [Southgate, D.A.T., Waldron, K., Johnson, I.T. and Fenwick, G.R., editors]. Cambridge: Royal Society of Chemistry/Norwich: AFRC Institute of Food Research.Google Scholar
Komai, M. & Kimura, S. (1980). Gastrointestinal responses to graded levels of cellulose feeding in conventional and germ-free mice. Journal of Nutritional Science and Vitaminology 26, 389399.CrossRefGoogle ScholarPubMed
Mallett, A. K., Bearne, C. A., Rowland, I. R., Farthing, M. C. G., Cole, C. B. & Fuller, R. (1987). The use of rats associated with a human fecal flora as a model for studying the effects of diet on the human gut microflora. Journal of Applied Bacteriology 63, 3945.CrossRefGoogle Scholar
Mesh, J. C., Andrieux, C., Sakata, T., Beaumatin, P., Bensaada, M., Popot, F., Szylit, O. & Durand, M. (1993). Effects of galacto-oligosaccharide and bacterial status on much distribution in mucosa and on large intestine fermentation in rats. British Journal of Nutrition 69, 903912.Google Scholar
Miller, R. S. & Hoskins, L. C. (1981). Mucin degradation in human colon ecosystems. Fecal population densities of mucin-degrading bacteria estimated by a' most probable number' method. Gastroenterology 81, 759765.CrossRefGoogle ScholarPubMed
Nilsson, U. & Björck, J. (1988). Availability of cereal fmtans and inulin in the rat intestinal tract. Journal of Nutrition 118, 14821486.CrossRefGoogle ScholarPubMed
Nilsson, U., Öste, R., Jägerstad, M. & Birkhed, D. (1988). Cereal fructans: in vitro and in vivo studies on availability in rats and humans. Journal of Nutrition 118, 13251330.CrossRefGoogle ScholarPubMed
Pasquier, M. C. & Vatier, J. (1990). Mucus gastro-intestinal: une barrière protectrice complexe (Gastrointestinal mucus: a complex protective barrier). Gastroentérologie Clinique et Biologique 14, 352365.Google ScholarPubMed
Reddy, B. S., Pleasants, J. R. & Wostmann, B. S. (1968). Effect of dietary carbohydrates on intestinal disaccharidases in germ-free and conventional rats. Journal of Nutrition 95, 413419.CrossRefGoogle ScholarPubMed
Rhodes, J. M. (1989). Colonic mucus and mucosal glycoproteins: the key to colitis and cancer? Gut 30,16601666.CrossRefGoogle ScholarPubMed
Rumessen, J. J., Bode, S., Hamberg, O. & Gudmand-Hoyer, E. (1990). Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation and influence on blood glucose, insulin and C peptide responses in healthy subjects. American Journal of Clinical Nutrition 52, 675681.CrossRefGoogle Scholar
Sakata, T. (1987). Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition 58, 95103.CrossRefGoogle ScholarPubMed
Sakata, T. & Engelhardt, W. Von (1981). Influence of short-chain fatty acids and osmolality on mucin release in the rat colon. Cell and Tissue Research 219, 371377.CrossRefGoogle ScholarPubMed
Salyers, A. A., West, S. E. H., Vercellotti, J. R. & Wilkins, T. D. (1977). Fermentation of mucus and plant polysaccharides by anaerobic bacteria from the human colon. Applied and Environmental Microbiology 34, 529533.CrossRefGoogle Scholar
Satchithanandam, S., Vargofcak-Apker, M., Calvert, R. J., Leeds, A. R. & Cassidy, M. M. (1990). Alteration of gastrointestinal mucin by fiber feeding in rats. Journal of Nutrition 120, 11791184.CrossRefGoogle ScholarPubMed
Slayter, H. S., Wold, J. K. & Midtvedt, T. (1991). Intestinal mucin of germ-free rats. Biochemical and electron- microscopic characterisation. Carbohydrate Research 222, 19.CrossRefGoogle Scholar
Smith, A. C. & Podolsky, D. K. (1986). Colonic much glycoproteins in health and disease. Clinics in Gastroenterology 15, 815837.Google Scholar
Southon, S., Livesey, G., Gee, J. M. &Johnson, I. T. (1985). Differences in intestinal protein synthesis and cellular proliferation in well nourished rats consuming conventional laboratory diets. British Journal of Nutrition 53, 8795.CrossRefGoogle ScholarPubMed
Szentkuti, L., Riedesel, H., Enss, M.-L., Gaertner, K. & Engelhardt, W. Von (1990). Pre-epithelial mucus layer in the colon of conventional and germ-free rats. Histochemical Journal 22, 491497.CrossRefGoogle ScholarPubMed
Turck, D., Feste, A. S. & Lifschitz, C. H. (1993). Age and diet affect the compositiin of porcine colonic mucins. Pediatric Research 33, 564567.CrossRefGoogle Scholar