Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T08:59:20.178Z Has data issue: false hasContentIssue false

Intestinal microflora of human infants and current trends for its nutritional modulation

Published online by Cambridge University Press:  09 March 2007

Konstantinos C. Mountzouris
Affiliation:
Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK Axiou 60, Thrakomakedones, 13676 Attiki, Greece
Anne L. McCartney
Affiliation:
Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK
Glenn R. Gibson*
Affiliation:
Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK
*
*Corresponding author: Dr G. R. Gibson, fax +44 118 9357222, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Diet, among other environmental and genetic factors, is currently recognised to have an important role in health and disease. There is increasing evidence that the human colonic microbiota can contribute positively towards host nutrition and health. As such, dietary modulation has been proposed as important for improved gut health, especially during the highly sensitive stage of infancy. Differences in gut microflora composition and incidence of infection occur between breast- and formula-fed infants. Human milk components that cannot be duplicated in infant formulae could possibly account for these differences. However, various functional food ingredients such as oligosaccharides, prebiotics, proteins and probiotics could effect a beneficial modification in the composition and activities of gut microflora of infants. The aim of the present review is to describe existing knowledge on the composition and metabolic activities of the gastrointestinal microflora of human infants and discuss various possibilities and opportunities for its nutritional modulation.

Type
Review article
Copyright
Copyright © The Nutrition Society 2002

References

Amann, RI, Binder, BJ, Olson, RJ, Chisholm, SW, Devereux, R & Stahl, DA (1990 a) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmenta1 Microbiology 56, 19191925.CrossRefGoogle ScholarPubMed
Amann, RI, Krumholz, L & Stahl, DA (1990 b) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. Journal of Bacteriology 172, 762770.CrossRefGoogle ScholarPubMed
Anqerer, LM, Stoler, MH & Anqerer, RC (1987) In situ hybridisation. In Applications to Nemobiology, pp. 4270 [Valentino, K, Eberwine, JH and Barchas, JD, editors]. Oxford: Oxford University Press.Google Scholar
Ballongue, J, Schumann, C & Ouignon, P (1997) Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scandinavian Journal of Gastroenterology 32, 4144.CrossRefGoogle Scholar
Balmer, SE, Hanvey, LS & Wharton, BA (1994) Diet and faecal flora in the newborn: nucleotides. Archives of Disease in Childhood 70, Fl37Fl40.Google ScholarPubMed
Bennet, R & Nord, CE (1987) Development of the fecal anaerobic microflora after Caesarean section and treatment with antibiotics in newborn infants. Infection 15, 332336.CrossRefGoogle ScholarPubMed
Bennet, R, Nord, CE & Zetterstrom, R (1992) Transient colonisation of the gut of newborn infants by orally administered bifidobacteria and lactobacilli. Acta Paediatrica 81, 784787.CrossRefGoogle ScholarPubMed
Benno, Y, Sawada, K & Mitsuoka, T (1984) The intestinal microflora of infants: composition of faecal flora in breast-fed and bottle-fed infants. Microbiology and Immunology 28, 975986.CrossRefGoogle ScholarPubMed
Berg, RD (1996) The indigenous gastrointestinal microflora. Trends in Microbiology 4, 430435.CrossRefGoogle ScholarPubMed
Beritzoglou, E (1997) The intestinal microflora during the first weeks of life. Anaerobe 3, 173177.CrossRefGoogle Scholar
Beritzoglou, E, Romond, MB & Romond, C (1989) Modulation of Clostridium perfringens intestinal colonisation in infants delivered by Caesarean section. Infection 17, 232236.CrossRefGoogle Scholar
Bouhnik, Y, Flourie, B, D'Agay-Abensour, L, Pochart, P, Gramet, G, Durand, M & Rambaud, JC (1997) Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. Journal of Nutrition 127, 444448.CrossRefGoogle ScholarPubMed
Bouhnik, Y, Vahedi, K, Achour, L, Attar, A, Salfati, J, Pochart, P, Marteau, P, Flourie, B, Bornet, F & Rambaud, JC (1999) Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. Journal of Nutrition 129, 113116.CrossRefGoogle ScholarPubMed
Bourquin, LD, Titgemeyer, EC & Fahey, GC (1996) Fermentation of various dietary fiber sources by human fecal bacteria. Nutrition Research 16, 11191131.CrossRefGoogle Scholar
Boza, J (1998) Nucleotides in infant nutrition. Monatsschrift Inderheilkunde 146, S39S48.CrossRefGoogle Scholar
Brand-Miller, J, McVeagh, P, McNeil, Y & Messer, M (1998) Digestion of human milk oligosaccharides by healthy infants evaluated by the lactulose hydrogen breath test. Journal of Pediatrics 133, 9598.CrossRefGoogle ScholarPubMed
Brook, I, Barrett, C, Brinkman, CR, Martin, WJ & Finegold, SM (1979) Aerobic and anaerobic bacterial flora of the maternal cervix and newborn gastric fluid and conjunctiva: a prospective study. Pediatrics 63, 451455.CrossRefGoogle ScholarPubMed
Bullen, CL, Tearle, PV & Stewart, MG (1977) The effect of "humanized" milks and supplemented breast feeding on the faecal flora of infants. Journal of Medical Microbiology 10, 403413.CrossRefGoogle Scholar
Caplan, MS, Miller-Catchpole, R, Kaup, S, Russell, T, Lickerman, M, Amer, M, Xiao, Y & Thomson, R (1999) Bifidobacterial supplementation reduces the incidence of necrotising enterocolitis in a neonatal rat model. Gastroenterology 117, 577583.CrossRefGoogle Scholar
Cebra, JJ (1999) Influences of microbiota on intestinal immune system development. American Journal of Clinical Nutrition 69, 1046S1051S.CrossRefGoogle ScholarPubMed
Charteris, WP, Kelly, PM, Morelli, L & Collins, JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. Journal of Applied Microbiology 84, 759768.CrossRefGoogle Scholar
Christian, M, Edwards, C & Weaver, L (1999) Starch digestion in infancy. Journal of Pediatic Gastroenterology and Nutrition 29, 116124.Google ScholarPubMed
Collins, MD & Gibson, GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. American Journal of Clinical Nutrition 69, 1052S1057S.CrossRefGoogle ScholarPubMed
Coppa, GV, Gabrielli, O, Pierani, P, Catassi, C, Carlucci, A & Giorgi, PL (1993) Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91, 637641.CrossRefGoogle ScholarPubMed
Cosgrove, M (1998) Nucleotides. Nutrition 14, 748751.CrossRefGoogle ScholarPubMed
Cummings, J, Lee, A & Storey, D (2001) Workshop: physiology and tolerance of LDCs. British Journal of Nutrition 85, S59S60.CrossRefGoogle ScholarPubMed
Cummings, JH & Macfarlane, GT (1991) The control and consequences of bacterial fermentation in the human colon. Journal of Applied Bacteriology 70, 443459.CrossRefGoogle ScholarPubMed
Cunningham-Rundles, S & Lin, DHL (1998) Nutrition and the immune system of the gut. Nutrition 14, 573579.CrossRefGoogle ScholarPubMed
Cuthbertson, WJF (1999) Evolution of infant nutrition. British Journal of Nutrition 81, 359371.CrossRefGoogle ScholarPubMed
De Bruin, NC, Degenhart, HJ, Gal, S, Westerterp, KR, Stijnen, T & Visser, HKA (1998) Energy utilisation and growth in breast-fed and formula-fed infants measured prospectively during the first year of life. American Journal of Clinical Nutrition 67, 885896.CrossRefGoogle ScholarPubMed
Engfer, MB, Stahl, B, Finke, B, Sawatzki, G & Daniel, H (2000) Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. American Journal of Clinical Nutrition 71, 15891596.CrossRefGoogle ScholarPubMed
Franks, AH, Harmsen, HJM, Raangs, GC, Jansen, GJ, Schut, F & Welling, GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology 64, 33363345.CrossRefGoogle ScholarPubMed
Fuller, R (1989) Probiotics in man and animals. Journal of Applied Bacteriology 66, 365378.Google Scholar
Garofalo, RP & Goldman, AS (1999) Expression of functional immunomodulatory and anti-inflammatory factors in human milk. Clinics in Perinatology 26, 361377.CrossRefGoogle ScholarPubMed
Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.CrossRefGoogle ScholarPubMed
Gibson, GR & Roberfroid, MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125, 14011412.CrossRefGoogle ScholarPubMed
Gil, A, Corral, E, Martinez-Valverde, A & Molina, JA (1986) Effects of the addition of nucleotides to an adapted milk formula on the microbial pattern of feces in at term newborn infants. Journal of Clinical Nutrition and Gastroenterology 1, 127132.Google Scholar
Gnoth, MJ, Kunz, C, Kinne-Saffran, E & Rudloff, S (2000) Human milk oligosaccharides are minimally digested in vitro. Journal of Nutrition 130, 30143020.CrossRefGoogle ScholarPubMed
Goldman, AS, Chheda, S & Garofalo, R (1997) Spectrum of immunomodulating agents in human milk. International Journal of Pediatric Hematology/Oncology 4, 491497.Google Scholar
Gronlund, MM, Lehtonen, OP, Eerola, E & Kero, P (1999 a) Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. Journal of Pediatic Gastroenterology and Nutrition 28, 1925.Google ScholarPubMed
Gronlund, MM, Salminen, S, Mykkanen, H, Kero, P & Lehtonen, OP (1999 b) Development of intestinal bacterial enzymes in infants – relationship to mode of delivery and type of feeding. Acta Pathologica, Microbiologica et Immunologica Scandinavica 107, 655660.CrossRefGoogle ScholarPubMed
Gudmand-Hoyer, E & Skovbjerg, H (1996) Disaccharide digestion and maldigestion. Scandinavian Journal of Gastroenterology 31, 111121.CrossRefGoogle Scholar
Gyorgy, P, Jeanloz, RW, von Nicolai, H & Zilliken, F (1974) Undialyzable factors for Lactobacillus bifidus var pennsylvanicus: protective effects of sialic acid bound to glycoproteins and oligosaccharides against bacterial degradation. European Journal of Biochemistry 43, 2933.CrossRefGoogle ScholarPubMed
Gyorgy, P, Norris, RF & Rose, CS (1954) Bifidus factor I. A variant of Lactobacillus bifidus requiring a special growth factor. Archives of Biochemistry and Biophysics 48, 193201.CrossRefGoogle Scholar
Hague, A, Elder, DJE, Hicks, DJ & Paraskeva, C (1995) Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. International Journal of Cancer 60, 400406.CrossRefGoogle ScholarPubMed
Hammann, R (1982) A reassessment of the microbial flora of the female genital tract, with special reference to the occurrence of Bacteroides species. Journal of Medical Microbiology 15, 293302.CrossRefGoogle Scholar
Hamosh, M (1983) Lingual lipase and fat digestion in the neonatal period. Journal of Pediatic Gastroenterology and Nutrition 2, S236S241.Google ScholarPubMed
Hamosh, M (1997) Introduction: Should infant formulas be supplemented with bioactive components and conditionally essential nutrients present in human milk. Journal of Nutrition 127, 971S974S.CrossRefGoogle Scholar
Harmsen, HJM, Wildeboer, ACM, Raangs, GC, Wagendorp, AA, Klijn, N, Bindels, JC & Welling, GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. Journal of Pediatic Gastroenterology and Nutrition 30, 6167.Google ScholarPubMed
Hartemink, R & Rombouts, FM (1999) Comparison of media for the detection of bifidobacteria, lactobacilli and total anaerobes from faecal samples. Journal of Microbiological Methods 36, 181192.CrossRefGoogle ScholarPubMed
Heavey, PM & Rowland, IR (1999) The gut microflora of the developing infant: microbiology and metabolism. Microbial Ecology in Health and Disease 11, 7583.CrossRefGoogle Scholar
Heine, WE, Klein, PD & Reeds, PJ (1991) The importance of alpha-lactalbumin in infant nutrition. Journal of Nutrition 131, 277283.CrossRefGoogle Scholar
Hernell, O & Blackberg, L (1983) Bile-salt-stimulated lipase of human milk and lipid digestion in the neonatal period. Journal of Pediatic Gastroenterology and Nutrition 2, S242S247.Google ScholarPubMed
Holdeman, LV, Cato, EP & Moore, WEC (1977) Anaerobic Laboratory Manual, 4th ed. Blacksburg: Virginia Polytechnic and State University.Google Scholar
Holtmann, G, Kelly, DG, Sterbby, B & DiMagno, EP (1997) Survival of human pancreatic enzymes during small bowel transit: effect of nutrients, bile acids, and enzymes. American Journal of Physiology 273, G553G558.Google ScholarPubMed
Isolauri, E, Juntunen, M, Rautanen, T, Sillanaukee, P & Koivula, T (1991) A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88, 9097.Google ScholarPubMed
Jukes, DJ (1997) Infant formula and follow-on formula. In Food Legislation of the UK. A Concise Guide, pp. 4247. Oxford: Butterworth Heinemann.Google Scholar
Kaneko, T, Kohmoto, T, Kikuchi, H, Shiota, M, Iino, H & Mitsuoka, T (1994) Effects of isomaltooligosaccharides with different degrees of polymerisation on human fecal bifidobacteria. Bioscience Biotechnology and Biochemistry 58, 22882290.CrossRefGoogle Scholar
Kawase, K, Suzuki, T, Kiyosawa, I, Okonogi, S, Kawashima, T & Kuboyama, M (1983) Effects of composition of infant formulas on the intestinal microflora of infants. Bifidobacteria Microflora 2, 2531.CrossRefGoogle Scholar
Kien, CL, McClead, RE & Cordero, L Jr (1996) In vivo lactose digestion in preterm infants. American Journal of Clinical Nutrition 64, 700705.CrossRefGoogle ScholarPubMed
Kim, WJ (1993) Bacteriocins of lactic acid bacteria: their potential as food biopreservative. Food Reviews International 9, 299313.CrossRefGoogle Scholar
Kirjavainen, PV, Ouwehand, AC, Isolauri, E & Salminen, SJ (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiology Letters 167, 185189.CrossRefGoogle ScholarPubMed
Kleessen, B, Bunke, H, Tovar, K, Noack, J & Sawatzki, G (1995) Influence of two infant formulas and human milk on the development of the faecal flora in newborn infants. Acta Paediatrica 84, 13471356.CrossRefGoogle ScholarPubMed
Kohmoto, T, Fukui, F, Takaku, H & Mitsuoka, T (1991) Dose-response test of isomaltooligosaccharides for increasing fecal bifidobacteria. Agricultural and Biological Chemistry 55, 21572159.Google Scholar
Kok, RG, De Waal, A, Schut, F, Welling, GW, Weenk, G & Hellingwerf, KJ (1996) Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Applied and Environmental Microbiology 62, 36683672.CrossRefGoogle ScholarPubMed
Kunz, C (1998) Complex oligosaccharides in infant nutrition. Monatsschrift Inderheilkunde 146, S49S56.CrossRefGoogle Scholar
Kunz, C & Rudloff, S (1993) Biological functions of oligosaccharides in human milk. Acta Paediatrica 82, 903912.CrossRefGoogle ScholarPubMed
Lahov, E & Regelson, W (1996) Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food and Chemical Toxicology 34, 131145.CrossRefGoogle ScholarPubMed
Lambert, EJ & Hall, MA (1995) Infant nutrition part 1: preweaning (0–4 months). British Journal of Hospital Medicine 53, 567569.Google ScholarPubMed
Langendijk, PS, Schut, F, Jansen, GJ, Raangs, GC, Kamphuis, GR, Wilkinson, MHF & Welling, GW (1995) Quantitative in situ hybridisation of Bifidobacterium spp. with genus-specific 16S-rRNA-targeted probes and its application in fecal samples. Applied and Environmental Microbiology 61, 30693075.CrossRefGoogle ScholarPubMed
Langhendries, JP, Detry, J, Van Hees, J, Lamboray, JM, Darimont, J, Mozin, MJ, Secretin, MC & Senterre, J (1995) Effect of a fermented infant formula containing viable bifidobacteria on the fecal flora composition and pH of healthy full-term infants. Journal of Pediatric Gastroenterology and Nutrition 21, 177181.Google ScholarPubMed
Lari, AR, Gold, F, Borderon, JC, Laugier, J & Lafont, JP (1990) Implantation and in vivo antagonistic effects of antibiotic-susceptible Escherichia coli strains administered to premature newborns. Biology of the Neonate 58, 7378.CrossRefGoogle Scholar
Lebenthal, A & Lebenthal, E (1999) The ontogeny of the small intestinal epithelium. Journal of Parenteral and Enteral Nutrition 23, S3S6.CrossRefGoogle ScholarPubMed
Lee, PC (1983) Digestibility of starches and modified food starches. Journal of Pediatric Gastroenterology and Nutrition 2, S227S232.Google ScholarPubMed
Lentze, MJ & Sterchi, EE (1983) Hydrolysis of proteins and proteolytic activity. Journal of Pediatic Gastroenterology and Nutrition 2, S252S259.Google ScholarPubMed
Levin, RJ (1994) Digestion and absorption of carbohydrates – from molecules and membranes to humans. American Journal of Clinical Nutrition 59, 690S698S.CrossRefGoogle ScholarPubMed
Levy, J (1998) Immunonutrition: the pediatric experience. Nutrition 14, 641647.CrossRefGoogle ScholarPubMed
Lifschitz, CH, Smith, EO & Garza, C (1983) Delayed complete functional lactase sufficiency in breast-fed infants. Journal of Pediatic Gastroenterology and Nutrition 2, 478482.Google ScholarPubMed
Lifschitz, CH, Wolin, MJ & Reeds, PJ (1990) Characterisation of carbohydrate fermentation in feces of formula-fed and breast-fed infants. Pediatric Research 27, 165169.CrossRefGoogle ScholarPubMed
Livesey, G (2001) Tolerance of low-digestible carbohydrates: a general view. British Journal of Nutrition 85, S7S16.CrossRefGoogle ScholarPubMed
Lopez-Alarcon, M, Villalpando, S & Fajardo, A (1997) Breast-feeding lowers the frequency and duration of acute respiratory infection and diarrhea in infants under six months of age. Journal of Nutrition 127, 436443.CrossRefGoogle ScholarPubMed
Lundequist, B, Nord, CE & Winberg, J (1985) The composition of the faecal microflora of breastfed and bottle fed infants from birth to eight weeks. Acta Paediatrica Scandinavica 74, 4551.CrossRefGoogle ScholarPubMed
Macfarlane, GT, Allison, C, Gibson, SAW & Cummings, JH (1988) Contribution of the microflora on the proteolyis in the human large intestine. Journal of Applied Bacteriology 64, 3746.CrossRefGoogle Scholar
Macfarlane, GT & McBain, AJ (1999) The human colonic microbiota. In Colonic Microbiota, Nutrition and Health, pp. 328 [Gibson, GR and Roberfroid, MB, editors]. Holland: Kluwer Scientific Publishers.Google Scholar
Macfarlane, GT, Macfarlane, S & Gibson, GR (1998) Validation of a three-stage continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microbial Ecology 35, 180187.CrossRefGoogle ScholarPubMed
Mack, DR, Michail, S, Wei, S, McDougall, L & Hollingsworth, MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. American Journal of Physiology 276, G941G950.Google ScholarPubMed
Mackie, RI, Sghir, A & Gaskins, HR (1999) Developmental microbial ecology on the neonatal gastrointestinal tract. American Journal of Clinical Nutrition 69, 1035S1045S.CrossRefGoogle ScholarPubMed
Marteau, P & Flourie, B (2001) Tolerance to low-digestible carbohydrates: symptomatology and methods. British Journal of Nutrition 85, S17S21.CrossRefGoogle ScholarPubMed
Mata, LJ, Carrillo, C & Villatoro, E (1969) Fecal microflora in healthy persons in a preindustrial region. Applied Microbiology 17, 596602.CrossRefGoogle Scholar
Mevissen-Verhage, EAE, Marcelis, JH, De Vos, MN, Harmsen-Van Amerongen, WCM & Verhoef, J (1987) Bifidobacterium, Bacteroides, and Clostridium spp. in fecal samples from breast-fed and bottle-fed infants with and without iron supplement. Journal of Clinical Microbiology 25, 285289.Google ScholarPubMed
Midtvedt, AC & Midtvedt, T (1992) Production of short chain fatty acids by the intestinal microflora during the first 2 years of human life. Journal of Pediatric Gastroenterology and Nutrition 15, 395403.Google ScholarPubMed
Millar, MR, Bacon, C, Smith, SL, Walker, V & Hall, MA (1993) Enteral feeding of premature infants with Lactobacillus GG. Archives of Disease in Childhood 69, 483487.CrossRefGoogle ScholarPubMed
Millar, MR, Linton, CJ, Cade, A, Glancy, D, Hall, M & Jalal, H (1996) Application of 16S rRNA gene PCR to study bowel flora of preterm infants with and without necrotising enterocolitis. Journal of Clinical Microbiology 34, 25062510.CrossRefGoogle Scholar
Moore, WEC, Cato, EP & Holdeman, LV (1978) Some current concepts in intestinal bacteriology. American Journal of Clinical Nutrition 31, S33S42.CrossRefGoogle ScholarPubMed
Mountzouris, KC, Gilmour, SG, Grandison, AS & Rastall, RA (1999) Modelling of oligodextran production in an ultrafiltration stirred-cell membrane reactor. Enzyme and Microbial Technology 24, 7585.CrossRefGoogle Scholar
Mullis, K, Faloona, F, Scharf, S, Saiki, R, Horn, G & Erlich, H (1986) Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Harbor Symposia on Quantitative Biology LI, 263273.CrossRefGoogle Scholar
Nakhla, T, Fu, D, Zopf, D, Brodsky, NL & Hurt, H (1999) Neutral oligosaccharide content of preterm human milk. British Journal of Nutrition 82, 361367.CrossRefGoogle ScholarPubMed
Newburg, DS (1997) Do the binding properties of oligosaccharides in milk protect human infants from gastrointestinal bacteria? Journal of Nutrition 127, 980S984S.CrossRefGoogle ScholarPubMed
Norin, KE, Gustafsson, BE, Lindblad, BS & Midtvedt, T (1985) The establishment of some microflora associated biochemical characteristics in feces from children during the first years of life. Acta Paediatrica Scandinavica 74, 207212.CrossRefGoogle ScholarPubMed
Olano-Martin, E, Mountzouris, KC, Gibson, GR & Rastall, RA (2000) In vitro fermentability of dextran oligodextran and maltodextrin by human gut bacteria. British Journal of Nutrition 83, 247255.CrossRefGoogle ScholarPubMed
O'Sullivan, DJ (1999) Methods of analysis of the intestinal microflora. In Probiotics a Critical Review, pp. 2344 [Tannock, GW, editor]. Norfolk, England: Horizon Scientific Press.Google Scholar
Ouwehand, AC, Kirjavainen, PV, Gronlund, MM, Isolauri, E & Salminen, SJ (1999) Adhesion of probiotic micro-organisms to intestinal mucus. International Dairy Journal 9, 623630.CrossRefGoogle Scholar
Ouwehand, AC, Salminen, SJ, Skurnik, M & Conway, PL (1997) Inhibition of pathogen adhesion by β-lactoglobulin. International Dairy Journal 7, 685692.CrossRefGoogle Scholar
Pakkanen, R & Aalto, J (1997) Growth factors and antimicrobial factors of bovine colostrum. International Dairy Journal 7, 285297.CrossRefGoogle Scholar
Parrett, AM & Edwards, CA (1997) In vitro fermentation of carbohydrate by breast and formula fed infants. Archives of Disease in Childhood 76, 249253.CrossRefGoogle ScholarPubMed
Parrett, AM, Edwards, CA & Lokerse, E (1997) Colonic fermentation capacity in vitro: development during weaning in breast-fed infants is slower for complex carbohydrates than for sugars. American Journal of Clinical Nutrition 65, 927933.CrossRefGoogle ScholarPubMed
Pellegrini, A, Thomas, U, Bramaz, N, Hunziker, P & Von Fellenberg, R (1999) Isolation and identification of three bactericidal domains in the bovine alpha-lactalbumin molecule. Biochimica et Biophysica Acta 1426, 439448.CrossRefGoogle ScholarPubMed
Peterson, JA, Patton, S & Hamosh, M (1998) Glycoproteins of the human milk fat globule in the protection of the breast fed infant against infections. Biology of the Neonate 74, 143162.CrossRefGoogle ScholarPubMed
Petschow, BW, Talbott, RD & Batema, RP (1999) Ability of lactoferrin to promote the growth of Bifidobacterium spp. in vitro is independent of receptor binding capacity iron saturation level. Journal of Medical Microbiology 48, 541549.CrossRefGoogle ScholarPubMed
Pihlanto-Leppala, A, Marnila, P, Hubert, L, Rokka, T, Korhonen, HJT & Karp, M (1999) The effect of α-lactalbumin and β-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM 103. Journal of Applied Microbiology 87, 540545.CrossRefGoogle Scholar
Pletincx, M, Legein, J & Vandenplas, Y (1995) Fungemia with Saccharomyces boulardii in a 1-year-old girl with protracted diarrhea. Journal of Pediatic Gastroenterology and Nutrition 21, 113115.Google Scholar
Rings, EHHM, Van Beers, EH, Krasinski, SD, Verhave, M, Montgomery, RK, Grand, RJ, Dekker, J & Buller, HA (1994) Lactase; origin, gene expression, localisation, and function. Nutrition Research 14, 775797.CrossRefGoogle Scholar
Rose, SJ (1984) Bacterial flora of breast-fed infants. Pediatrics 74, 563.CrossRefGoogle ScholarPubMed
Saavedra, JM, Bauman, NA, Oung, I, Perman, JA & Yolken, RH (1994) Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344, 10461049.CrossRefGoogle ScholarPubMed
Saito, H, Miyakawa, H, Tamura, Y, Shimamura, S & Tomita, M (1991) Potent bactericidal activity of bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. Journal of Dairy Science 74, 37243730.CrossRefGoogle ScholarPubMed
Sako, T, Matsumoto, K & Tanaka, R (1999) Recent progress on research and applications of non-digestible galacto-oligosaccharides. International Dairy Journal 9, 6980.CrossRefGoogle Scholar
Salminen, S, Bouley, C, Boutron-Ruault, MC, Cummings, JH, Franck, A, Gibson, GR, Isolauri, E, Moreau, MC, Roberfroid, M & Rowland, IR (1998 a) Functional food science and gastrointestinal physiology and function. British Journal of Nutrition 80, S147S171.CrossRefGoogle ScholarPubMed
Salminen, S, Ouwehand, AC & Isolauri, E (1998 b) Clinical applications of probiotic bacteria. International Dairy Journal 8, 563572.CrossRefGoogle Scholar
Salminen, S & Salminen, E (1997) Lactulose, lactic acid bacteria, intestinal microbiology and mucosal protection. Scandinavian Journal of Gastroenterology 32, 4548.CrossRefGoogle Scholar
Schanbacher, FL, Talhouk, RS, Murray, FA, Gherman, LI & Willett, LB (1998) Milk-borne bioactive peptides. International Dairy Journal 8, 393403.CrossRefGoogle Scholar
Schleifer, KH, Ludwig, W & Amann, R (1993) Nucleic acid probes. In Handbook of New Bacterial Systematics, pp. 463510 [Goodfellow, M and O'Donnell, AG, editors]. London: Academic Press.Google Scholar
Schlimme, E, Martin, D & Meisel, H (2000) Nucleosides and nucleotides: natural bioactive substances in milk and colostrum. British Journal of Nutrition 84, S59S68.CrossRefGoogle ScholarPubMed
Schwertmann, A, Rudloff, S & Kunz, C (1996) Potential ligands for cell adhesion molecules in human milk. Annals of Nutrition & Metabolism 40, 252262.CrossRefGoogle ScholarPubMed
Sievers, E, Oldigs, HD, Schulz-Lell, G & Schaub, J (1993) Fecal excretion in infants. European Journal of Pediatrics 152, 452454.CrossRefGoogle ScholarPubMed
Siigur, U, Ormisson, A & Tamm, A (1993) Faecal short-chain fatty acids in breast fed and bottle-fed infants. Acta Paediatrica 82, 536538.CrossRefGoogle ScholarPubMed
Silvi, S, Rumney, CJ & Rowland, IR (1996) An assessment of three selective media for bifidobacteria in faeces. Journal of Applied Bacteriology 81, 561564.CrossRefGoogle ScholarPubMed
Simhon, A, Douglas, JR, Drasar, BS & Soothill, JF (1982) Effect of feeding on infants' faecal flora. Archives of Disease in Childhood 57, 5458.Google ScholarPubMed
Singh, B, Halestrap, AP & Paraskeva, C (1997) Butyrate can act as a stimulator of growth or inducer of apoptosis in human colonic epithelial cell lines depending on the presence of alternative energy sources. Carcinogenesis 18, 12651270.CrossRefGoogle ScholarPubMed
Stark, PL & Lee, A (1982) The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. Journal of Medical Microbiology 15, 189203.CrossRefGoogle ScholarPubMed
Suau, A, Bonnet, R, Sutren, M, Godon, JJ, Gibson, GR, Collins, MD & Dore, J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Applied and Environmental Microbiology 65, 47994807.CrossRefGoogle ScholarPubMed
Tagg, JR, Dajani, AS & Wannamaker, LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriological Reviews 40, 722756.CrossRefGoogle ScholarPubMed
Tamura, Z (1983) Nutriology of Bifidobacteria. Bifidobacteria Microflora 2, 316.CrossRefGoogle Scholar
Tanaka, R, Takayama, H, Morotomi, M, Kuroshima, T, Ueyama, S, Matsumoto, K, Kuroda, A & Mutai, M (1983) Effects of administration of TOS and Bifidobacterium breve 4006 on the human fecal flora. Bifidobacteria Microflora 2, 1724.CrossRefGoogle Scholar
Tannock, GW, Fuller, R, Smith, SL & Hall, MA (1990) Plasmid profiling of members of the family Enterobacteriaceae, lactobacilli and bifidobacteria to study the transmission of bacteria from mother to infant. Journal of Clinical Microbiology 28, 12251228.CrossRefGoogle Scholar
Treem, WR (1995) Congenital sucrase-isomaltase deficiency. Journal of Pediatric Gastroenterology and Nutrition 21, 114.Google ScholarPubMed
Vanderhoof, JA (1998) Immunonutrition: the role of carbohydrates. Nutrition 14, 595598.CrossRefGoogle ScholarPubMed
Van Hoijdonk, ACM, Kussendrager, KD & Steijns, JM (2000) In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. British Journal of Nutrition 84, S127S134.CrossRefGoogle Scholar
Wachtershauser, A & Stein, J (2000) Rationale for the luminal provision of butyrate in intestinal diseases. European Journal of Nutrition 39, 164171.Google ScholarPubMed
Wang, RF, Cao, WW & Cerniglia, CE (1996) PCR detection and quantification of predominant anaerobic bacteria in human and animal fecal samples. Applied and Environmental Microbiology 62, 12421247.CrossRefGoogle Scholar
Wang, X & Gibson, GR (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 75, 373380.CrossRefGoogle ScholarPubMed
Wharton, BA, Balmer, SE, Berger, HM & Scott, PH (1994) Protein nutrition, fecal flora and iron-metabolism – the role of milk-based formulae. Acta Paediatrica 83, 2430.CrossRefGoogle Scholar
Yildirim, Z & Johnson, MG (1998) Characterisation and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. Journal of Food Protection 61, 4751.CrossRefGoogle Scholar
Yoshioka, H, Fujita, K, Sakata, H, Murono, K & Iseki, K (1991) Development of the normal intestinal flora and its clinical significance in infants and children. Bifidobacteria Microflora 10, 1117.CrossRefGoogle Scholar
Yuhara, T, Isojima, S, Tsuchiya, F & Mitsuoka, T (1983) On the intestinal flora of bottle-fed infants. Bifidobacteria Microflora 2, 3339.CrossRefGoogle Scholar
Zucht, HD, Raida, M, Aderman, K, Magert, HJ & Forssmann, WG (1995) Casocidin-I: a casein-αs2 derived peptide exhibits antibacterial activity. FEBS Letters 372, 185188.CrossRefGoogle ScholarPubMed