Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:32:35.504Z Has data issue: false hasContentIssue false

Intestinal cellular proliferation and protein synthesis in zinc-deficient rats

Published online by Cambridge University Press:  24 July 2007

Susan Southon G. Livesey
Affiliation:
AFRC Food Research Institute, Colney Lane, Norwich NR4 7UA
Jennifer M. Gee
Affiliation:
AFRC Food Research Institute, Colney Lane, Norwich NR4 7UA
I. T. Johnson
Affiliation:
AFRC Food Research Institute, Colney Lane, Norwich NR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Immature male Wistar rats were given a low-zinc semi-synthetic diet (2 mg Zn/kg) for 28 d. Control groups received a similar diet supplemented with 58 mg Zn/kg either ad lib. or in amounts matched to the consumption of the Zn-deficient group. Rates of growth, food consumption and small intestinal length were significantly reduced in the Zn-depleted rats.

2. Zn deficiency in the rat was associated with a reduction in the ratio, crypt:villus and a lower rate of crypt cell division in the jejunum. This resulted in a substantial decrease in the net influx of new cells into the villi of the Zn-deficient animals compared with controls.

3. The fractional rates of protein synthesis in jejunal mucosa were measured by a technique based on the determination of L-[4-3H]phenylalanine incorporation. There was no evidence of a decline in the protein synthetic rate in total mucosa from Zn-deficient rats.

4. It is suggested that a reduction in cell influx into the villi may be responsible for the morphological and functional changes observed in the small intestine of rats fed on a low-Zn diet.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Burch, R. E., Williams, R. V., Hahn, H. K. J., Jetton, M. M. & Sullivan, J. F. (1975). Clinical Chemistry 21, 568577.CrossRefGoogle Scholar
Chesters, J. K. & Will, M. (1978). British Journal of Nutrition 39, 375382.CrossRefGoogle Scholar
Clarke, R. M. (1970). Journal of Anatomy 107, 519529.Google Scholar
Clarke, R. M. (1973). Digestion 8, 161175.CrossRefGoogle Scholar
Creamer, B. (1974). In The Small Intestine, pp. 123 [Creamer, B., editor]. London: Heinemann.Google Scholar
de Both, N. J., van Dongen, J. M., van Hofwegen, B., Keulemans, J., Visser, W. J. & Galjaard, H. (1974). Developmental Biology 38, 119137.CrossRefGoogle Scholar
Deschner, J. R. & Lipkin, M. (1970). Journal of the National Cancer Institute 44, 175185.Google Scholar
Duncan, J. R. & Dreosti, I. E. (1976). Journal of Comparative Pathology 86, 8185.CrossRefGoogle Scholar
Fell, B. F., Leigh, L. C. & Williams, R. B. (1973). Research in Veterinary Science 14, 317325.CrossRefGoogle Scholar
Galjaard, H., Buys, J., van Duuren, M. & Geisen, J. (1970). Journal of Histochemistry and Cytochemistry 18, 291301.CrossRefGoogle Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). Biochemical Journal 204, 393398.Google Scholar
Imondi, A. R., Bayliss, M. E. & Lipkin, M. (1969). Experimental Cell Research 58, 323330.Google Scholar
Kinter, W. B. & Wilson, T. H. (1965). Journal of Cell Biology 25, 1939.Google Scholar
Lipkin, M., Sherlock, P. & Bell, B. (1963). Gastroenterology 45, 721729.Google Scholar
Lowry, O.H., Rosebrough, N. J., Farr, L. A. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). Biochemical Journal 178, 373379.CrossRefGoogle Scholar
Messier, B. & Leblond, C. P. (1960). American Journal of Anatomy 106, 247294.CrossRefGoogle Scholar
Mills, C. F., Quaterman, J., Chesters, J. K., Williams, R. B. & Dalgarno, A.C. (1969). American Journal of Clinical Nutrition 22, 12401249.CrossRefGoogle Scholar
Paullauf, J. (1978). In Trace Element Metabolism in Man and Animals, vol. 3, pp. 218221 [Kirchgessner, M., editor]. München Institut für Emahrungs-Physiologic, Technische Universität München.Google Scholar
Prasad, A. S. & Oberleas, D. (1973). Journal of Laboratory and Clinical Medicine 82, 461466.Google Scholar
Prasad, A. S. & Oberleas, D. (1974). Journal of Laboratory and Clinical Medicine 83, 634639.Google Scholar
Reeds, P. J., Haggarty, P., Wahle, W. J. & Fletcher, J. M. (1982). Biochemical Journal 204, 393398.CrossRefGoogle Scholar
Rijke, R. P. C., Plaisier, H., Hoovgeveen, A. T., Lamerton, L. F. & Galjaard, H. (1975). Cell and Tissue Kinetics 8, 441453.Google Scholar
Sandstead, H. H. & Rinaldi, R. A. (1973). Journal of Cell Physiology 73, 8184.Google Scholar
Southon, S., Gee, J. M. & Johnson, I. T. (1984). British Journal of Nutrition 52, 371380.CrossRefGoogle Scholar
Southon, S., Livesey, G., Gee, J. M. & Johnson, I. T. (1985). British Journal of Nutrition 53, 8795.CrossRefGoogle Scholar
Swenerton, H., Schrader, R. & Hurley, L. S. (1969). Science 166, 10141015.CrossRefGoogle Scholar
Vallee, B. L. & Falchuck, K. H. (1981). Philosophical Transactions of the Royal Society 294, 185197.Google Scholar
Wimber, D.E. & Lamberton, L.F. (1963). Radiation Research 18, 137146.CrossRefGoogle Scholar