Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:28:52.165Z Has data issue: false hasContentIssue false

Intestinal absorption of sorbitol and effects of its acute administration on glucose homeostasis in normal rats

Published online by Cambridge University Press:  09 March 2007

A.-M. Lauwers
Affiliation:
Unité de Diabétologie et Nutrition, Université de Louvain, Faculté de Médecine, UCL 54.74, B–1200 Brussels, Belgium
C. Daumerie
Affiliation:
Unité de Diabétologie et Nutrition, Université de Louvain, Faculté de Médecine, UCL 54.74, B–1200 Brussels, Belgium
J. C. Henquin
Affiliation:
Unité de Diabétologie et Nutrition, Université de Louvain, Faculté de Médecine, UCL 54.74, B–1200 Brussels, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Intestinal absorption of sorbitol was studied in a duodeno-jejunal loop of anaesthetized rats. The acute effects of exogenous sorbitol on glucose homeostasis were also evaluated in male and female rats.

2. In the presence of lumen concentrations of sorbitol ranging from l μM to 200mM, a fairly constant low percentage (about 12%) of the loop's contents was absorbed after 30 min. This amount increased only slightly with time, but this was not due to sorbitol accumulation in the mucosal layer of the loop.

3. 3-O-methylglucose was absorbed much more quickly than sorbitol, but did not interfere with sorbitol absorption. The latter was not impaired by omission of lumen sodium ions nor by phloridzin, both of which inhibited 3-O-methylglucose absorption.

4. Gastric administration of sorbitol did not affect plasma glucose or insulin levels. Glucose or sucrose administration caused a similar rise in plasma glucose, but the increase in plasma insulin levels was larger after glucose than after sucrose administration.

5. Intravenous administration of sorbitol slightly increased plasma glucose and insulin levels. These changes were, however, considerably smaller than those occurring after glucose administration.

6. In the normal rat, intestinal absorption of sorbitol is passive and proceeds at a low rate. Acute oral administration of sorbitol does not affect glucose homeostasis, which is only slightly disturbed by a large intravenous load of sorbitol.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Brunzell, J. D. (1978). Diabetes Care 1, 223230.CrossRefGoogle Scholar
Conard, V. (1955). Mesures de l' assimilation du glucose. Bases Théoriques et Applications Cliniques, pp. 1140. Brussels: Acta Medica Belgica.Google Scholar
Crane, R. K. (1960). Physiological Reviews 40, 789825.CrossRefGoogle Scholar
Crapo, P. A., Kolterman, O. G. & Olefsky, J. M. (1980). Diabetes Care 3, 575581.CrossRefGoogle Scholar
Daumerie, C. & Henquin, J. C. (1982 a). Gut 23, 140145.CrossRefGoogle Scholar
Daumerie, C. & Henquin, J. C. (1982 b). Diabète et Métabolisme 8, 15.Google Scholar
de Kalbermatten, N., Ravussin, E., Maeder, E., Geser, C., Jecquier, E. & Felber, J. P. (1980). Metabolism 29, 6267.CrossRefGoogle Scholar
Ertel, N. J., Akgun, S., Kemp, F. W. & Mittler, J. C. (1983). Journal of Nutrition 113, 566573.CrossRefGoogle Scholar
Förster, H. (1972). Medizin und Ernährung 12, 715.Google Scholar
Förster, H. (1974). In Sugars in Nutrition, pp. 259280 [Sipple, H. and Macnutt, K. editors]. New york: Academic Press.Google Scholar
Froesch, E. R., Zapf, J., Keller, U. & Oelz, O. (1971). European Journal of Clinical Investigation 2, 814.CrossRefGoogle Scholar
Heinz, F. & Lambrecht, W. (1967). Zeitschrift für Physiologische Chemie 348, 855862.CrossRefGoogle Scholar
Hyams, J. S. (1983). Gastroenterology 84, 3033.CrossRefGoogle Scholar
Keller, U. & Froesch, E. R. (1971). Diabetologia 7, 349356.CrossRefGoogle Scholar
Kuzuya, T., Kanazawa, Y. & Kosaka, K. (1969). Endocrinology 84, 200207.CrossRefGoogle Scholar
Macdonald, I., Keyser, A. & Pacy, D. (1978). American Journal of Clinical Nutrition 31, 13051311.CrossRefGoogle Scholar
Malaisse, W. J., Sener, A. & Mahy, M. (1974). European Journal of Biochemistry 47, 365370.CrossRefGoogle Scholar
Mehnert, H., Dietze, G. & Haslbeck, M. (1975). Nutrition and Metabolism 18, 171190.CrossRefGoogle Scholar
Mehnert, H. & Förster, H. (1961). Klinische Wochenschrift 11, 596597.CrossRefGoogle Scholar
Michaels, E. B., Hahn, E. C. & Kenyon, A. J. (1979). Analytical Biochemistry 99, 288296.CrossRefGoogle Scholar
Morrison, A. D., Clements, R. S., Travis, S. B., Oski, F. & Winegrad, A. I. (1970). Biochemical and Biophysical Research Communications 40, 199205.CrossRefGoogle Scholar
Pösö, A. R. & Hillbom, M. E. (1977). Biochemical Pharmacology 26, 331335.CrossRefGoogle Scholar
Salem, A. A., Cocco, A. E. & Hendrix, T. R. (1965). American Journal of Physiology 209, 165168.CrossRefGoogle Scholar
Schnell-Dompert, E. & Siebert, G. (1980). Zeitschrift für Physiologische Chemie 361, 10691075.CrossRefGoogle Scholar
Sener, A., Hutton, J. C., Schoonheydt, J., Tinant, A., Urbain, M. & Malaisse, W. J. (1979). Diabète et Métabolisme 5, 217222.Google Scholar
Thannhäuser, S. J. & Meyer, K. H. (1929). Münchener Medizinische Wochenschrift 76, 356360.Google Scholar
Wick, A. N., Almen, M. & Joseph, L. (1951). Journal of the American Pharmaceutical Association 40, 542550.CrossRefGoogle Scholar
Wilson, T. H. & Crane, R. K. (1958). Biochimica et Biophysica Acta 29, 3044.CrossRefGoogle Scholar