Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T10:18:43.008Z Has data issue: false hasContentIssue false

Insulin action and glucose metabolism in sheep fed on dried-grass or ground, maize-based diets

Published online by Cambridge University Press:  09 March 2007

A. N. Janes
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne, NEI 7RU
T. E. C. Weekes
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne, NEI 7RU
D. G. Armstrong
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne, NEI 7RU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of an exogenous supply of glucose, provided by the digestion of maize starch in the small intestine, on endogenous glucose metabolism and insulin action was studied in sheep using the euglycaemic insulin clamp procedure.

2. Insulin was infused intravenously at rates of 0.2, 0.5, 1.0 and 6.0 mU/min per kg live weight for four consecutive periods in each of four sheep fed on dried-grass and maize-based diets. Glucose was also infused intravenously at a variable rate, sufficient to maintain the plasma glucose concentration at basal levels. Whole-body rates of glucose metabolism were determined using a continuous infusion of [6-3H]glucose.

3. From the resultinginsulin dose-response curves, it was observed that, when the sheep were fed on the dried-grass diet, the responsiveness of glucose metabolism to insulin was less than that reported for non-ruminants.

4. When fed the maize-based diet, the glucose metabolic clearance rates (MCR) observed during insulin infusions were significantly greater (P < 0.05) than those observed for the dried-grass diet. However, after correcting for the non-insulin-mediated glucose disposal, differences between diets were not significant.

5. The sensitivity of glucose utilization to insulin was not affected by diet. The plasma insulin concentrations causing half-maximal insulin-mediated glucose MCR were 103 (SE 21) and 85 (SE 11) mU/l for the dried-grass and maize-based diets respectively.

6. The sensitivity of endogenous glucose production to insulin was also unaffected by diet. The plasma insulin concentrations resulting in the suppression of endogenous glucose production to half the basal level were 80 (SE 26) and 89 (SE 29) mU/l for the dried-grass and maize-based diets respectively.

7. It is concluded that the observed increase in glucose utilization on the maize-based diet was due partly to a slight change in responsiveness to insulin and also partly to a change in the rate of non-insulin-mediated glucose disposal.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Beever, D. E., Coehlo Da Silva, J. F. & Armstrong, D. G. (1970). Proceedings of the Nutrition Society 29, 43A.Google Scholar
Brockman, R. P. (1983 a). Comparative Biochemistry and Physiology 74A, 681685.CrossRefGoogle Scholar
Brockman, R. P. (1983 b). Comparative Biochemistry and Physiology 75A, 201203.CrossRefGoogle Scholar
Brockman, R. P., Bergman, E. N., Joo, P. K. & Manns, J. G. (1975). American Journal of Physiology 229, 13441350.CrossRefGoogle Scholar
Chandrasena, L. G., Bjorkman, O. & Phillips, R. W. (1982). Federation Proceedings 41, 342 Abst.Google Scholar
Ciaraldi, T., Kolterman, O., Siegal, J. & Olefsky, J. (1979). American Journal of Physiology 236, E621E625..Google Scholar
Cowan, J. S. & Hetenyi, G. (1971). Metabolism 20, 360367.CrossRefGoogle Scholar
De Fronzo, R. A., Ferrannini, E., Hendler, R., Felig, P. & Wahren, J. (1983). Diabetes 32, 3545.CrossRefGoogle Scholar
De Fronzo, R. A., Ferrannini, E., Hendler, R., Wahren, J. & Felig, P. (1978 a). Proceedings of the National Academy of Sciences, USA 75, 51735177.CrossRefGoogle Scholar
De Fronzo, R. A., Soman, V., Sherwin, R. S., Hendler, R. & Felig, P. (1978 b). Journal of Clinical Investigation 62, 204213.CrossRefGoogle Scholar
Doberne, L., Greenfield, M. S., Rosenthal, M., Widstrom, A. & Reaven, G. M. (1982). Diabetes 31, 396400.CrossRefGoogle ScholarPubMed
Doberne, L., Greenfield, M. S., Schulz, B. & Reaven, G. M. (1981). Diabetes 30, 829835.CrossRefGoogle Scholar
Etherton, T. D. (1982). Journal of Animal Science 54, 5867.CrossRefGoogle Scholar
Evans, E. & Buchanan-Smith, J. G. (1975). British Journal of Nutrition 33, 3344.CrossRefGoogle Scholar
Fuller, M. F., Weekes, T. E. C., Cadenhead, A. & Bruce, J. B. (1977). British Journal of Nutrition 30, 489496.CrossRefGoogle Scholar
Gottesman, I., Mandarino, L. & Gerich, J. (1983). American Journal of Physiology 244, E632E635.Google Scholar
Hogue, D. E., Elliot, J. M., Walker, E. F. & Vidal, H. (1968). Proceedings of the Cornell Nutrition Conference 34, 5760.Google Scholar
Hom, F. G., Goodner, C. J. & Berrie, M. A. (1984). Diabetes 30, 141152.CrossRefGoogle Scholar
Huntington, G. B., Prior, R. L. & Britton, R. A. (1980). Journal of Nutrition 110, 19041913.CrossRefGoogle Scholar
Issekutz, B. (1981). American Journal of Physiology 240, E451E457.Google Scholar
Janes, A. N., Parker, D. S., Weekes, T. E. C. & Armstrong, D. G. (1984 a). Journal of Agricultural Science, Cambridge 103, 549553.CrossRefGoogle Scholar
Janes, A. N., Weekes, T. E. C. & Armstrong, D. G. (1984 b). Canadian Journal of Animal Science 64 Suppl., 298299.CrossRefGoogle Scholar
Janes, A. N., Weekes, T. E. C. & Armstrong, D. G. (1985). British Journal of Nutrition 54, 449458.CrossRefGoogle Scholar
Kahn, C. R. (1980). Metabolism 29, 455466.CrossRefGoogle Scholar
Kolterman, O. G., Insel, J., Saekow, M. & Olefsky, J. M. (1980). Journal of Clinical Investigation 65, 12721284.CrossRefGoogle Scholar
Le Marchand-Brustel, Y. & Freychet, P. (1979). Journal of Clinical Investigation 64, 15051515.CrossRefGoogle Scholar
Lindsay, D. B. (1970). In Physiology of Digestion and Metabolism in the Ruminant, pp. 438451 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Lindsay, D. B. (1979). Proceedings of the Nutrition Society 38, 295301.CrossRefGoogle Scholar
Ørskov, E. R., Fraser, C. & Kay, R. N. B. (1969). British Journal of Nutrition 23, 217226.CrossRefGoogle Scholar
Prior, R. L. & Christenson, R. K. (1978). Journal of Animal Science 46, 201210.CrossRefGoogle Scholar
Rizza, R. A., Mandarino, L. J. & Gerich, J. E. (1981). American Journal of Physiology 240, E630E639.Google Scholar
Schmidt, S. P., Smith, J. A. & Young, J. W. (1975). Journal of Dairy Science 58, 952956.CrossRefGoogle Scholar
Steele, R., Wall, J., De Bodo, R. C. & Altszuler, N. (1956). American Journal of Physiology 187, 1524.CrossRefGoogle Scholar
Tucker, R. E., Little, C. O., Mitchell, G. E., Hayes, B. W. & Karr, M. R. (1966). Journal of Animal Science 25, 911 Abstr.Google Scholar
Tucker, R. E., Mitchell, G. E. & Little, C. O. (1968). Journal of Animal Science 27, 824826.CrossRefGoogle Scholar
Weekes, T. E. C., Sasaki, Y. & Tsuda, T. (1983). American Journal of physiology 244, E335E345.Google Scholar
White, R. G., Steel, J. W., Leng, R. A. & Luick, J. R. (1969). Biochemical Journal 114, 203214.CrossRefGoogle Scholar