Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T04:22:51.974Z Has data issue: false hasContentIssue false

Influence of starches of low digestibility on the rat caecal microflora

Published online by Cambridge University Press:  09 March 2007

A. K. Mallett
Affiliation:
British Industrial Biological Research Association, Carshalton, Surrey SM5 4DS
C. A. Bearne
Affiliation:
British Industrial Biological Research Association, Carshalton, Surrey SM5 4DS
P. J. Young
Affiliation:
British Industrial Biological Research Association, Carshalton, Surrey SM5 4DS
I. R. Rowland
Affiliation:
British Industrial Biological Research Association, Carshalton, Surrey SM5 4DS
C. Berry
Affiliation:
Flour Milling and Baking Research Association, Chorleywood, Herts WD3 5SH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Male Sprague-Dawley rats were fed on either a purified, fibre-free diet or a diet in which half the maize starch was replaced with uncooked amylomaize or potato starch (equivalent to 100 or 200 g amylase-resistant starch (ARS)/kg diet respectively). Changes in short-chain fatty acids (SCFA), pH, ammonia and a number of bacterial variables in caecal contents were then assessed.

2. Both ARS supplements decreased caecal content pH by approximately 1–2 units, with an associated reduction in ammonia concentration. Potato starch significantly decreased the concentration of SCFA in the hind-gut, while amylomaize supplementation increased propionic and butyric acids but decreased the occurrence of minor, branched-chain fatty acids.

3. Caecal bacterial biotransformation activities (β-glucosidase (EC 3.2.1.21), β-glucuronidase (EC 3.2.1.31), reduction of p-nitrobenzoic acid, apparent ammonia formation) were consistently decreased by both ARS sources.

4. The results demonstrate that amylase-resistant carbohydrate altered toxicologically important functions in the large-intestinal flora of the rat.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1988

References

Berry, C. S. (1986) Journal of Cereal Science 4, 301314.CrossRefGoogle Scholar
Berry, C. S. & Fisher, N. (1985). Abstracts of the XIII International Congress of Nutrition, Brighton, p. 70.Google Scholar
Björck, I., Nyman, M., Pedersen, B., Siljeström, M., Asp, N.-G. & Eggum, B. O. (1986) Journal of Cereal Science 4, 111.CrossRefGoogle Scholar
Cummings, J. H. & Englyst, H. N. (1987) American Journal of Clinical Nutrition 45, 12431255.CrossRefGoogle Scholar
Cummings, J. H., Englyst, H. N. & WigginsH. S, H. S, (1986) Nutrition Reviews 44, 5054.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1985) American Journal of Clinical Nutrition 42, 778787.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1986) American Journal of Clinical Nutrition 44, 4250.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1987) American Journal of Clinical Nutrition 45, 423431.CrossRefGoogle Scholar
Englyst, H. N., Wiggins, H. S. & Cummings, J. H. (1982) Analyst 107, 307318.CrossRefGoogle Scholar
Flourie, B., Florent, C., Jouany, J.-P., Thivend, P., Etanchand, F. & Ramband, J.-C. (1986) Gastroenterology 90, 111119.CrossRefGoogle Scholar
Holdeman, L. V. & Moore, W. E. C. (1973). Anaerobe Laboratory Manual, 2nd ed. Blacksburg, Virgina: VPI Anaerobe Laboratory.Google Scholar
MacFarlane, G. T. & Allison, C. (1986) FEMS Microbiology Ecology 38, 1924.CrossRefGoogle Scholar
MacFarlane, G. T., Cummings, J. H. & Allison, C. (1986) Journal of General Microbiology 132, 16471656.Google Scholar
MacFarlane, G. T. & Englyst, H. N. (1986) Journal of Applied Bacteriology 60, 195201.CrossRefGoogle Scholar
Mallett, A. K., Rowland, I. R. & Bearne, C. A. (1985) Toxicology 36, 253262.CrossRefGoogle Scholar
Moore, L. V. & Holdeman, W. E. C. (1975) Cancer Research 35, 34183420.Google Scholar
Roediger, W. E. W. (1980) Gut 21, 793798.CrossRefGoogle Scholar
Roediger, W. E. W. (1982) Gastroenterology 83, 424429.CrossRefGoogle Scholar
Rowland, I. R., Mallett, A. K. & Wise, A. (1985) CRC Critical Reviews in Toxicology 31, 31103.CrossRefGoogle Scholar
Salyers, A. A. & Leedle, J. A. Z. (1985). In Human Intestinal Microflora in Health and Disease, pp. 129146 [Hentges, J. H., editor]. New York: Academic Press.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1968). Statistical Methods, 6th ed. Ames: Iowa State University Press.Google Scholar
Stephen, A. M., Haddad, A. C. & Philips, S. F. (1983) Gastroenterology 85, 589595.CrossRefGoogle Scholar
Targowski, S. P., Klucinski, W., Babiker, S. & Nonnecke, B. J. (1984) Infection and Immunity 43, 289293.CrossRefGoogle Scholar
Thornton, J. R. (1981) Lancet i, 10811082.CrossRefGoogle Scholar
Van Dokkum, W., de Boer, B. C. J., van Faassen, A., Pikaar, N. A. & Hermus, R. J. J. (1983) British Journal of Cancer 48, 109110.CrossRefGoogle Scholar
Vince, A. J. & Burridge, S. M. (1980) Journal of Medical Microbiology 13, 177191.CrossRefGoogle Scholar
Visek, W. J. (1978) American Journal of Clinical Nutrition 31, S216S220.CrossRefGoogle Scholar
Wise, A., Mallett, A. K. & Rowland, I. R. (1982) Xenobiotica 12, 111118.CrossRefGoogle Scholar
Wolin, M. J. & Miller, T. L. (1983). In Human Intestinal Microflora in Health and Disease, pp. 147165 [Hentges, J. H., editor]. New York: Academic Press.CrossRefGoogle Scholar