Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T09:22:56.320Z Has data issue: false hasContentIssue false

Influence of fructose feeding on individual enzymic reactions in the formation and metabolism of bile acids in rat liver homogenates

Published online by Cambridge University Press:  10 January 2017

M. Carrella
Affiliation:
Department of Medicine, Serafimerlasarettet and Department of Chemistry, Karolinska Institutet, Stockholm, Sweden
I. Björkhem
Affiliation:
Department of Medicine, Serafimerlasarettet and Department of Chemistry, Karolinska Institutet, Stockholm, Sweden
K. Einarsson
Affiliation:
Department of Medicine, Serafimerlasarettet and Department of Chemistry, Karolinska Institutet, Stockholm, Sweden
K. Hellström
Affiliation:
Department of Medicine, Serafimerlasarettet and Department of Chemistry, Karolinska Institutet, Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rats were maintained for 10 d on a semi-synthetic diet containing 700 g glucose or 700 g fructose/kg. Individual enzymie reactions in bile acid synthesis and metabolism were studied by measuring the 7α-hydroxylation of [4-14C]cholesterol, the 12α-hydroxylation of 7α-[6β-3H]hydroxy-4-cholesten-3-one, the 26-hydroxylation of 5β-[7β-3H]cholestane-3α,7α-diol and the 6β-hydroxylation of [3H]lithocholic acid in liver homogenates.

2. The serum cholesterol level was approximately the same in both groups of animals, but the serum triglyceride level was almost twice as high in the fructose-fed rats compared to the glucose-fed rats.

3. The 6β-hydroxylation of [3H]lithocholic acid was increased by about 20% in the fructose-fed rats compared to the glucose-fed animals. The activities of the other enzymic reactions studied did not differ significantly between the two groups of animals. The findings are discussed in relation to previous knowledge concerning mechanisms regulating triglyceride, pre-β-lipoprotein and bile acid synthesis.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Authors 1976

References

Adams, P. W., Kissebah, A. H., Harrigan, P., Stokes, T. & Wynn, V. (1974). Eur. J. clin. Invest. 4, 149.CrossRefGoogle Scholar
Anderson, J. T., Grande, F., Matsumoto, Y. & Keys, A. (1963). J. Nutr. 79, 349.CrossRefGoogle Scholar
Bergström, S. & Gloor, U. (1955). Acta ehem. scand. 9, 34.CrossRefGoogle Scholar
Björkhem, I. (1969). Eur. J. Biochem. 8, 337.CrossRefGoogle Scholar
Björkhem, I. & Danielsson, H. (1974). Mol. Cell. Biochem. 4, 79.CrossRefGoogle Scholar
Björkhem, I. & Einarsson, K. (1970). Eur. J. Biochem. 13, 174.CrossRefGoogle Scholar
Björkhem, I. & Gustafsson, J. (1973). Eur. J. Biochem. 36, 201.CrossRefGoogle Scholar
Cohen, R. I., Raicht, R. F., Nicolau, G. & Mosbach, E. H. (1975). Lipids 10, 168.CrossRefGoogle Scholar
Danielsson, H. (1973). In The Bile Acids, vol. 2, p. 1 [Nair, P. P. and Kritchevsky, D., editors]. New York: Plenum Press.Google Scholar
Danielsson, H. & Einarsson, K. (1966). J. biol. Chem. 241, 1449.CrossRefGoogle Scholar
Danielsson, H., Einarsson, K. & Johansson, G. (1967). Eur. J. Biochem. 2, 44.CrossRefGoogle Scholar
Eaton, R. P. & Kipnis, D. M. (1969). Am. J. Physiol. 217, 1160.CrossRefGoogle Scholar
Einarsson, K. & Gustafsson, J.-A. (1974). Biochem. Pharmac. 23, 9.CrossRefGoogle Scholar
Einarsson, K., Hellström, K. & Kallner, M. (1974). J. clin. Invest. 54, 1301.CrossRefGoogle Scholar
Einarsson, K. & Johansson, G. (1969). FEBS Lett. 4, 177.CrossRefGoogle Scholar
Frederickson, D. S., Levy, R. J. & Lees, R. S. (1967). New Engl. J. Med. 276, 34, 94, 148, 215, 273.CrossRefGoogle Scholar
Hanel, H. K. & Dam, H. (1955). Acta chem. scand. 9, 677.CrossRefGoogle Scholar
Kaufmann, N. A. & Kapitulnik, J. (1973). Acta med. scand. Suppl. 542, 229.Google Scholar
Laurell, S. (1966). Scand. J. clin. Lab. Invest. 18, 668.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Macdonald, S. & Braithwaite, D. M. (1964). Clin. Sci. 27, 23.Google Scholar
Nestel, P. J. (1966). Clin. Sci. 31, 31.Google Scholar
Nikkilä, E. A. & Kekki, M. (1972). Eur. J. clin. Invest. 2, 231.CrossRefGoogle Scholar
Nikkilä, E. A. & Ojala, K. (1965). Life Sci. 4, 937.CrossRefGoogle Scholar
Quarfordt, S. H., Frank, A., Shames, D. M., Berman, M. & Steinberg, D. (1970). J. clin. Invest. 49, 2281.CrossRefGoogle Scholar
Reaven, G. M., Hill, D. B., Gross, R. C. & Farquhar, J. W. (1965). J. clin. Invest. 44, 1826.CrossRefGoogle Scholar
Schonfeld, G. & Pfleger, B. (1971). J. Lipid Res. 12, 614.CrossRefGoogle Scholar
Waddell, M. & Falion, H. J. (1973). J. clin. Invest. 52, 2725.CrossRefGoogle Scholar
Wu, C.-H. & Shreeve, W. W. (1975). Metabolism 24, 755.CrossRefGoogle Scholar