Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T05:08:04.290Z Has data issue: false hasContentIssue false

The influence of dietary folate supplementation on the incidence of teratogenesis in zinc-deficient rats

Published online by Cambridge University Press:  09 March 2007

Patricia B. Quinn
Affiliation:
Department of Nutrition, University College, Cork, Republic of Ireland
F. M. Cremin
Affiliation:
Department of Nutrition, University College, Cork, Republic of Ireland
V. R. O'sullivan
Affiliation:
Department of Anatomy, University College, Cork, Republic of Ireland
F. M. Hewedi
Affiliation:
Faculty of Agriculture, Cairo University, Egypt
R.J. Bond
Affiliation:
Biological Services Unit, University College, Cork, Republic of Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two studies were conducted to investigate the possibility that pteroylmonoglutamic acid supplementation would alleviate teratogenesis in zinc-deficient rats. Pregnant rats of the Wistar strain were fed on Zn-deficient (< 0.5 mg Zn/kg) or Zn-supplemented (75 or 95 mg Zn/kg) diets from mating until day 18.5 of gestation. The basal level of pteroylmonoglutamic acid added to all diets (0.56 mg/kg) was supplemented with 30–200 mg/kg in selected diets. Dietary Zn deprivation resulted in fetal resorption, fetal growth retardation and reduced concentrations of Zn in fetuses and maternal plasma and tibia. Low maternal body-weight at conception emerged as an important determinant of risk of resorption in Zn-deficient rats. Dietary Zn deficiency resulted in reduced maternal plasma folate concentrations and these values were inversely correlated with litter size or weight in Zn-deficient rats. Pteroylmonoglutamic acid supplementation increased maternal plasma folate concentrations, but did not reduce the high incidence of teratogenesis which occurred in Zn-deficient rats. Supplementation of Zn-deficient rats with pteroylmonoglutamic acid significantly increased the incidence of clubbed foot and tended to increase the incidence of brain or meningeal abnormalities, or both, and cleft palate, but did not reduce maternal or fetal Zn status. Pteroylmonoglutamic acid supplementation also increased the weights of Zn-supplemented control fetuses.

Type
Micronutrients
Copyright
Copyright © The Nutrition Society 1990

References

Abab, A. R. & Gregory, J. F. (1987). Determination of folate bioavailability with a rat bioassay. Journal of Nutrition 177, 866873.Google Scholar
Albert, A. (1953). Quantitative studies of the avidity of naturally occurring substances for trace elements. 3. Pteridines, riboflavin and purines. Biochemistry Journal 54, 646654.CrossRefGoogle Scholar
Baumslag, N., Edelstein, T. & Metz., J. (1970). Reduction of incidence of prematurity by folic acid supplementation in pregnancy. British Medical Journal 1, 1617.Google Scholar
Blot, I., Papiernik, E., Kaltwasser, J. P., Werner, E. & Tchernia, G. (1981). Influence of routine administration of folic acid and iron during pregnancy. Gynecology and Obstetrics Investigation 12, 294304.Google Scholar
Bremert, J. C., Dreosti, I. E. & Tulsi, R. S. (1989). Teratogenic interaction of folic acid and zinc deficiencies in the rat. Nutrition Reports International 39, 383390.Google Scholar
Butterworth, C. E. Jr, Hatch, K., Cole, P., Sauberlick, H. E., Tamura, T., Cornwell, P. E. & Soong, S. (1988). Zinc concentration in plasma and erythrocytes of subjects receiving folic acid supplementation. American Journal of Clinical Nutrition 47, 484486.Google Scholar
Canton, M. C., Cotter, B. M., Cremin, F. M. & Morrissey, P. A. (1989). The effect of dietary zinc deficiency on pancreatic γ-glutamyl hydrolase (EC 3.4.22.12) activity and on the absorption of pteroylpolyglutamate in rats. British Journal of Nutrition 62, 185193.Google Scholar
Chandler, C. J., Wang, T. T. Y. & Halsted, C. H. (1986). Pteroylpolyglutamate hydrolase from human jejunal brush borders. Journal of Biological Chemistry 261, 928933.CrossRefGoogle ScholarPubMed
Cherry, F. F., Bennett, E. A., Bazzano, G. S., Johnson, L. K., Fosmire, G. J. & Batson, H. K. (1981). Plasma zinc in hypertension/toxemia and other reproductive variables in adolescent pregnancy. American Journal of Clinical Nutrition 34, 23672375.Google Scholar
Fehily, D. F., Cremin, F. M., Grant, H., Flynn, A. & Jenkins, D. M. (1987). Zinc content and bioavailability in the Irish diet. Irish Journal of Food Science and Technology, 11, 2533.Google Scholar
Fuller, N. J., Evans, P. H., Howlett, M. & Bates, C. J. (1988). The effects of dietary folate and zinc on the outcome of pregnancy and early growth in rats. British Journal of Nutrition 59, 251259.CrossRefGoogle ScholarPubMed
Ghishan, F. K., Said, H. M., Wilson, P. C., Murrell, J. E. & Greene, H. L. (1986). Intestinal transport of zinc and folic acid: a mutual inhibitory effect. American Journal of Clinical Nutrition 43, 258262.Google Scholar
Hambidge, K. M., Krebs, N. F., Jacobs, M. A., Favier, A., Guyette, L. & Ikle, D. N. (1983). Zinc nutritional status during pregnancy: a longitudinal study. American Journal of Clinical Nutrition 37, 429442.CrossRefGoogle ScholarPubMed
Herbert, V., Colman, N., Spivack, M., Ocasio, E., Ghanta, V., Kimmel, K., Brenner, L., Freundlich, J. & Scott, J. (1975). Folic acid deficiency in the United States: folate assays in a prenatal clinic. American Journal of Obstetrics and Gynecology 123, 175179.CrossRefGoogle Scholar
Huber, A. M., Wallins, L. L. & De Russo, P. (1988). Folate nutriture in pregnancy. Journal of the American Dietetic Association 88, 791795.CrossRefGoogle ScholarPubMed
Hurley, L. S. & Swenerton, H. (1966). Congenital malformations resulting from zinc deficiency in rats. Proceedings of the Society for Experimental Biology and Medicine 123, 692696.Google Scholar
Hurley, L. S. & Swenerton, H. (1971). Lack of mobilization of bone and liver zinc under teratogenic conditions of zinc deficiency in rats. Journal of Nutrition 101, 597603.Google Scholar
Iyengar, L. (1971). Folic acid requirements of Indian pregnant women. American Journal of Obstetrics and Gynecology 111, 1316.Google Scholar
Iyengar, L. & Rajalakshmi, K. (1975). Effect of folic acid supplement on birth weights of infants. American Journal of Obstetrics and Gynecology 122, 332336.Google Scholar
Kalter, H. & Warkany, J. (1959). Experimental production of congenital malformations in mammals by metabolic procedure. Physiological Reviews 39, 69115.Google Scholar
Keating, J. N., Wada, L., Stokstad, E. L. R. & King, J. C. (1987). Folic acid: effect on zinc absorption in humans and in the rat. American Journal of Clinical Nutrition 46, 835839.CrossRefGoogle ScholarPubMed
Krumdieck, C. L., Boots, L. R., Cornwell, P. E. & Butterworth, C. E. Jr (1976). Cyclic variations in folate composition and pteroylpolyglutamyl hydrolase (conjugase) activity in the rat uterus. American Journal of Clinical Nutrition 29, 288294.Google Scholar
Laurence, K. M., James, N., Miller, M. H., Tennant, G. B. & Campbell, H. (1981). Double blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural tube defects. British Medical Journal 282, 15091511.CrossRefGoogle ScholarPubMed
McMaster, D., Ewing, A. S., Ervin, C., McBriar, D. L. & Love, A. H. G. (1985). The influence of dietary vitamins on zinc uptake from the lumen of the perfused rat gut. Nutrition Research Supp. 1, 267270.Google Scholar
Masters, D. G., Keen, C. L., Lonnerdal, B. & Hurley, L. S. (1983). Zinc deficiency teratogenicity: the protective role of maternal tissue catabolism. Journal of Nutrition 113, 905912.Google Scholar
Medico-Social Research Board (1986). Annual Report, p. 25. Dublin: Health Research Board.Google Scholar
Milne, D. B., Canfield, W. K., Mahalko, J. R. & Sandstead, H. H. (1984). Effect of oral folic acid supplements on zinc, copper and iron absorption and excretion. American Journal of Clinical Nutrition 39, 535539.CrossRefGoogle ScholarPubMed
Morgan, B. L. G. & Winick, M. (1978). The effects of folic acid supplementation during pregnancy in the rat. British Journal of Nutrition 40, 529533.CrossRefGoogle ScholarPubMed
Mukherjee, M. D., Sandstead, H. H., Ratnaparkhi, M. V., Johnson, L. K., Milne, D. B. & Stelling, H. P. (1984). Maternal zinc, iron, folic acid and protein nutriture and outcome of human pregnancy. American Journal of Clinical Nutrition 40, 496507.CrossRefGoogle ScholarPubMed
National Research Council (1978). Nutrient Requirements of Laboratory Animals, no. 10, 3rd revised ed. Washington, DC: National Academy of Sciences.Google Scholar
Nelson, M. M., Wright, H. V., Asling, C. W. & Evans, H. M. (1955). Multiple congenital abnormalities resulting from transitory deficiency of pteroylglutamic acid during gestation in the rat. Journal of Nutrition 56, 349370.Google Scholar
Record, I. R. & Dreosti, I. E. (1988). Teratogenesis as a function of maternal age in zinc deficient rats. In Trace Elements in Man and Animals 6, pp. 209210 [Hurley, L. S., Keen, C. L., Lonnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Record, I. R., Dreosti, I. E., Manuel, S. J., Buckley, R. A. & Tulsi, R. S. (1985). Teratological influence of the feeding cycle in zinc deficient rats. In Trace Elements in Man and Animals 5, pp. 210213 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Rogers, J. M., Keen, C. L. & Hurley, L. S. (1985). Zinc deficiency in pregnant Long-Evans hooded rats: teratogenicity and tissue trace elements. Teratology 31, 89100.Google Scholar
Rogozinski, H., Ankers, C., Lennon, D., Wild, J., Schorah, C., Sheppard, S. & Smithells, R. W. (1983). Folate nutrition in early pregnancy. Human Nutrition: Applied Nutrition 37A, 357364.Google Scholar
Ryan, B. F., Joiner, B. L. & Ryan, T. A. Jr (1985). Minitab Handbook, 2nd ed. Boston: Duxbury Press.Google Scholar
Scott, J. M., Ghanta, V. & Herbert, V. (1974). Trouble free microbiological serum and red cell folate assays. American Journal of Medical Technology 40, 125134.Google Scholar
Silink, M., Reddel, R.Bethel, M. & Rowe, P. B. (1975). γ-Glutamyl hydrolase (conjugase) purification and properties of the bovine hepatic enzyme. Journal of Biological Chemistry 250, 59825993.Google Scholar
Simmer, K., Iles, C. A., James, C. & Thompson, R. P. H. (1987) Are iron-folate supplements harmful? American Journal of Clinical Nutrition 45, 122125.Google Scholar
Smithells, R. W., Sheppard, S., Schorah, C. J., Seller, M. J., Nevin, N. C., Harris, R., Read, A. P. & Fielding, D. W. (1981). Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Archives of Diseases of Childhood 56, 911918.Google Scholar
Spring, J. A., Robertson, J. & Buss, D. H. (1979). Trace nutrients 3. Magnesium, copper, zinc, vitamin B6, vitamin B12 and folic acid in the British household food supply. British Journal of Nutrition 41, 487493.Google Scholar
Tamura, T., Kaiser, L. L., Watson, J. E., Halsted, C. H., Hurley, L. S. & Stokstad, E. L. R. (1987). Increased methionine synthetase activity in zinc deficient rat liver. Archives of Biochemistry and Biophysics 256, 311316.Google Scholar
Tamura, T., Shane, B., Baer, M. T., King, J. C., Margen, S. & Stokstad, E. L. R. (1978). Absorption of mono and polyglutamyl folates in zinc depleted man. American Journal of Clinical Nutrition 31, 19841987.Google Scholar
Tuttle, S., Aggett, P. J., Campbell, D. & MacGillivray, I. (1985). Zinc and copper nutrition in human pregnancy: a longitudinal study in normal primigravidae and in primigravidae at risk of delivering a growth retarded baby. American Journal of Clinical Nutrition 41, 10321041.Google Scholar
Wald, N. J. & Polani, P. E. (1984). Neural tube defects and vitamins: the need for a randomized clinical trial. British Journal of Obstetrics and Gynaecology 91, 516523.CrossRefGoogle ScholarPubMed
Wallwork, J. C., Fosmire, G. J. & Sandstead, H. H. (1981). Effect of zinc deficiency on appetite and plasma amino acid concentrations in the rat. British Journal of Nutrition 45, 127136.Google Scholar
Wang, T. T. Y., Reisenauer, A. M. & Halsted, C. H. (1985). Comparison of folate conjugase activities in human, pig, rat and monkey intestine. Journal of Nutrition 115, 814819.Google Scholar
Warkany, J. & Petering, H. G. (1973). Congenital malformations of the brain produced by short zinc deficiencies in rats. American Journal of Mental Deficiency 77, 645653.Google Scholar
Williams, R. B. & Mills, C. F. (1970). The experimental production of zinc deficiency in the rat. British Journal of Nutrition 24, 9891003.Google Scholar
Williams, R. B., Mills, C. F. & Davidson, R. J. L. (1973). Relationship between zinc deficiency and folic acid status of the rat. Proceedings of the Nutrition Society 32, 2A3A.Google Scholar
Wilson, S. D. & Horne, D. W. (1982). Use of glycerol cryoprotected lactobacillus casei for microbiological assay of folic acid. Clinical Chemistry 28, 11981200.Google Scholar