Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T02:54:42.527Z Has data issue: false hasContentIssue false

Influence of dietary cholesterol and fat source on atherosclerosis in the Japanese quail (Coturnix japonica)

Published online by Cambridge University Press:  09 March 2007

Yvonne V. Yuan
Affiliation:
Department of Food Science, University of British Columbia, 6650 NW Marine Drive, Vancouver, BC, Canada V6T 1Z4
David D. Kitts
Affiliation:
Department of Food Science, University of British Columbia, 6650 NW Marine Drive, Vancouver, BC, Canada V6T 1Z4
David V. Godin
Affiliation:
Department of Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Japanese quail has been used as a model of human atherosclerosis to investigate the mechanisms underlying the development of vascular lesions, i.e. hyperlipoproteinaemia and impaired endogenous antioxidant status. In the present study, Japanese quail were fed on semi-purified diets containing butter, beef tallow or soyabean-oil blends, with either 0.5 or 5 g cholesterol/kg for 9 weeks to examine the effects of dietary fat blends varying in fatty acid composition and cholesterol intake on plasma lipids and aortic atherosclerotic plaque and sterol composition. These findings were related to possible diet-induced changes in antioxidant status of selected tissues. Hypercholesterolaemia was confirmed (P < 0.001) in birds fed on high-cholesterol (HC) diets. Plasma total cholesterol concentration and cholesterol content of lipoprotein fractions in hypercholesterolaemic birds were lower (P < 0.05) in quail fed on the soyabean-oil blend. Plasma triacylglycerol content was increased (P < 0.001) in HC-fed birds. Dietary fat blends did not influence plasma triacylglycerol levels. Tissue antioxidant status (catalase (EC 1.11.1.6), glutathione peroxidase (EC 1.11.1.9), glutathione reductase (EC 1.6.4.1) and superoxide dismutase (EC 1.15.1.1) activities and glutathione content) was generally not greatly affected by dietary fat blend or cholesterol treatment. Birds fed on HC diets exhibited severe (P < 0.001) atherosclerotic plaque in aortas which was not influenced by the source of dietary fat blend. Scanning electron microscopy confirmed results of visual aortic plaque scoring using dissecting light microscopy. Several cholesterol oxides were identified and quantified in aortic plaque from HC-fed birds (5,6α-epoxy-5α-cholesterol, 7β-hydroxycholesterol and 7-ketocholesterol) regardless of dietary fat blend. The results indicate that dietary fat blends varying in polyunsaturated: saturated fatty acid ratios only marginally influence the degree of hypercholesterolaemia in atherosclerosis-susceptible quail fed on atherogenic diets only, and are not a factor, compared with sterol feeding, in modulating the degree of atherosclerosis or the aortic oxysterol content in these same birds. Moreover, diet-induced hyperlipoproteinaemia had only a small effect on antioxidant status of selected tissues examined.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Aebi, H. (1974). Catalase. In Methods of Enzymatic Analysis 2nd ed., Vol. 2, pp. 673684 ]Bergmeyer, H. U., editor[. Weinheim: Verlag Chemie GmbH.CrossRefGoogle Scholar
Bonithon-Kopp, C., Coudray, C., Berr, C., Touboul, P. J., Fève, J. M., Favier, A. & Ducimetière, P. (1997) Combined effects of lipid peroxidation and antioxidant status on carotid atherosclerosis in a population aged 59–71 y: the EVA study. American Journal of Clinical Nutrition 65, 121127.CrossRefGoogle Scholar
Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Buczynski, A., Wachowicz, B., Kedziora-Kornatowska, K., Tkaczewski, W. & Kedziora, J. (1993) Changes in antioxidant enzymes activities, aggregability and malonyldialdehyde concentration in blood platelets from patients with coronary heart disease. Atherosclerosis 100, 223228.CrossRefGoogle ScholarPubMed
Buege, J. A. & Aust, S. D. (1978) Microsomal lipid peroxidation. Methods in Enzymology 52, 302310.CrossRefGoogle ScholarPubMed
Caboni, M. F., Hrelia, S., Bordoni, A., Lercker, G., Capella, P., Turchetto, E. & Biagi, P. I. (1994) In vitro effects of 5α-cholestane-3β,5,6β-triol on cultured rat cardiomyocytes. Journal of Agricultural and Food Chemistry 42, 23672371.CrossRefGoogle Scholar
Carlson, L. A. & Böttiger, L. E. (1972) Ischaemic heart-disease in relation to fasting values of plasma triglycerides and cholesterol. Lancet i, 865868.CrossRefGoogle Scholar
Castelli, W. P. (1986) The triglyceride issue: a view from Framingham. American Heart Journal 112, 432437.CrossRefGoogle ScholarPubMed
Chapman, M. J. (1980) Animal lipoproteins: chemistry, structure and comparative aspects. Journal of Lipid Research 21, 789853.CrossRefGoogle ScholarPubMed
Day, C. G., Stafford, W. W. & Schurr, P. E. (1977) Utility of selected line (SEA) of the Japanese quail (Coturnix coturnix japonica) for the discovery of new anti-atherosclerosis drugs. Laboratory Animal Science 27, 817821.Google ScholarPubMed
Donaldson, W. E. (1982) Atherosclerosis in cholesterol-fed Japanese quail: evidence for amelioration by dietary vitamin E. Poultry Science 61, 20972102.CrossRefGoogle ScholarPubMed
Drabkin, D. L. & Austin, J. H. (1935) Preparation from washed blood cells: nitric oxide hemoglobin and sulfhemoglobin. Journal of Biological Chemistry 112, 5165.CrossRefGoogle Scholar
Dzeletovic, S., Breuer, O., Lund, E. & Diczfalusy, U. (1995) Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Analytical Biochemistry 225, 7380.CrossRefGoogle ScholarPubMed
Fernandez, M. L. & McNamara, D. J. (1991) Regulation of cholesterol and lipoprotein metabolism in guinea pigs mediated by dietary fat quality and quantity. Journal of Nutrition 121, 934943.Google Scholar
Flynn, M. A., Nolph, G. B., Sun, G. Y., Navidi, M. & Kranse, G. (1991) Effects of cholesterol and fat modification of self-selected diets on serum lipids and their specific fatty acids on normocholesterolemic and hypercholesterolemic humans. Journal of the American College of Nutrition 10, 93106.CrossRefGoogle ScholarPubMed
Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226, 497509.Google Scholar
Godin, D. V., Cheng, K. M., Garnett, M. E. & Nichols, C. R. (1994) Antioxidant status of Japanese quail: comparison of atherosclerosis-susceptible and -resistant strains. Canadian Journal of Cardiology 10, 221228.Google ScholarPubMed
Grundy, S. M. & Vega, G. L. (1988) Plasma cholesterol responsiveness to saturated fatty acids. American Journal of Clinical Nutrition 47, 822824.Google Scholar
Hayes, K. C., Khosla, P. & Pronczuk, A. (1995) A rationale for plasma cholesterol modulation by dietary fatty acids: modelling the human response in animals. Journal of Nutritional Biochemistry 6, 188194.Google Scholar
Hegsted, D. M., McGandy, R. B., Myers, M. L. & Stare, F. J. (1965) Quantitative effects of dietary fat on serum cholesterol in man. American Journal of Clinical Nutrition 17, 281295.CrossRefGoogle ScholarPubMed
Hennig, B. and Boissonneault, G. A. (1987) Cholestan-3β-5α,6β-triol decreases barrier function of cultured endothelial cell monolayers. Atherosclerosis 68, 255261.Google Scholar
Hunter, G. C., Dubick, M. A., Keen, C. L. & Eskelson, C. D. (1991) Effects of hypertension on aortic antioxidant status in human abdominal aneurysmal and occlusive disease. Proceedings of the Society for Experimental Biology and Medicine 196, 237279.Google ScholarPubMed
Jayakumari, N., Ambikakumari, V., Balakrishnan, K. G. & Subramonia Iyer, K. (1992) Antioxidant status in relation to free radical production during stable and unstable anginal syndromes. Atherosclerosis 94, 183190.CrossRefGoogle ScholarPubMed
Jurgens, G., Hoff, H. F., Chisolm, G. M. III & Esterbauer, H. (1987) Modification of human serum low density lipoprotein by oxidation-characterization and pathophysiological implications. Chemistry and Physics of Lipids 45, 315316.CrossRefGoogle ScholarPubMed
Keys, A., Anderson, J. T. & Grande, F. (1957) Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet ii, 959966.CrossRefGoogle Scholar
Khosla, P. & Hayes, K. C. (1991) Dietary fat saturation in rhesus monkeys affects LDL concentrations by modulating the independent production of LDL apolipoprotein B. Biochimica et Biophysica Acta 1083, 4656.CrossRefGoogle ScholarPubMed
Khosla, P. & Hayes, K. C. (1993) Dietary palmitic acid raises LDL cholesterol relative to oleic acid only at a high intake of cholesterol. Biochimica et Biophysica Acta 1210, 1322.CrossRefGoogle Scholar
L'Abbé, M. R., Trick, K. D. & Beare-Rogers, J. L. (1991) Dietary (n-3) fatty acids affect rat heart, liver and aorta protective enzyme activities and lipid peroxidation. Journal of Nutrition 121, 13311340.CrossRefGoogle ScholarPubMed
Lasser, N. L., Roheim, P. S., Edelstein, D. & Eder, H. A. (1973) Serum lipoproteins of normal and cholesterol-fed rats. Journal of Lipid Research 14, 118.CrossRefGoogle ScholarPubMed
Leyton, J., Drury, P. J. & Crawford, M. A. (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. British Journal of Nutrition 57, 383393.CrossRefGoogle ScholarPubMed
Lofland, H. B. Jr, Clarkson, T. B. & Goodman, H. O. (1961) Interactions among dietary fat, protein, and cholesterol in atherosclerosis-susceptible pigeons. Effects on serum cholesterol and aortic atherosclerosis. Circulation Research 9, 919924.CrossRefGoogle ScholarPubMed
Long, W. K. & Carson, P. E. (1961) Increased erythrocyte glutathione reductase activity in diabetes mellitus. Biochemical and Biophysical Research Communications 5, 394399.Google Scholar
McCormick, D. L., Radcliffe, J. D., Mehta, R. G., Thompson, C. A. & Moon, R. C. (1982) Temporal association between arterial cholesterol deposition, thymidine incorporation into DNA, and atherosclerosis in Japanese quail fed an atherogenic diet. Atherosclerosis 42, 113.CrossRefGoogle ScholarPubMed
Miller, D. S. & Payne, P. R. (1959) A ballistic bomb calorimeter. British Journal of Nutrition 13, 501508.CrossRefGoogle ScholarPubMed
Morin, R. J. & Peng, S.-K. (1992). Cholesterol oxides in plasma and tissues. In Biological Effects of Cholesterol Oxides pp. 89101 ]Peng, S.-K. and Morin, R. J., editors[. Boca Raton: CRC Press Inc.Google Scholar
Moron, M. S., Depierre, J. W. & Mannervik, B. (1979) Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta 582, 6778.Google Scholar
Nishina, P. M., Lowe, S., Verstuyft, J., Naggert, J. K., Kuypers, F. A. & Paigen, B. (1993) Effects of dietary fats from animal and plant sources on diet-induced fatty streak lesions in C57BL/6J mice. Journal of Lipid Research 34, 14131422.CrossRefGoogle ScholarPubMed
Nwokolo, E. & Kitts, D. D. (1988) Serum and liver lipids of rats fed rubber seed oil. Plant Foods for Human Nutrition 38, 145153.CrossRefGoogle ScholarPubMed
Paglia, D. E. & Valentine, W. N. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine 70, 158169.Google ScholarPubMed
Peng, S.-K., Taylor, C. B., Hill, J. C. & Morin, R. J. (1985) Cholesterol oxidation derivatives and arterial endothelial damage. Atherosclerosis 54, 121133.Google Scholar
Peng, S.-K., Taylor, C. B., Tham, P., Werthessen, N. T. & Mikkelson, B. (1978) Effect of auto-oxidation products from cholesterol on aortic smooth muscle cells – an in vitro study. Archives of Pathological and Laboratory Medicine 102, 5761.Google Scholar
Pronczuk, A., Khosla, P. & Hayes, K. C. (1994) Dietary myristic, palmitic and linoleic acids modulate cholesterolemia in gerbils. FASEB Journal 8, 11911200.CrossRefGoogle ScholarPubMed
Radcliffe, J. D., McCormick, D. L. & Moon, R. C. (1982) Serum and tissue lipid status during cholesterol-induced atherosclerosis in Japanese quail. Nutrition Reports International 25, 345352.Google Scholar
Randolph, R. K., Smith, B. P. & St Clair, R. W. (1984) Cholesterol metabolism in pigeon smooth muscle cells lacking a functional low density lipoprotein receptor pathway. Journal of Lipid Research 25, 903912.CrossRefGoogle ScholarPubMed
Randolph, R. K. & St Clair, R. W. (1984) Pigeon aortic smooth muscle cells lack a functional low density lipoprotein receptor pathway. Journal of Lipid Research 25, 888902.CrossRefGoogle Scholar
Reagan, J. W. Jr, Miller, L. R. & St Clair, R. W. (1990) In vivo clearance of low density lipoprotein in pigeons occurs by a receptor-like mechanism that is not down-regulated by cholesterol feeding. Journal of Biological Chemistry 265, 93819391.Google Scholar
Rosenfeld, M. E., Palinski, W., Yla-Herttuala, S., Butler, S. W. & Witztum, J. L. (1990) Distribution of oxidation specific lipid–protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 10, 336349.CrossRefGoogle ScholarPubMed
Shih, J. C. H. (1983) Atherosclerosis in Japanese quail and the effect of lipoic acid. Federation Proceedings 42, 24942497.Google ScholarPubMed
Shih, J. C. H., Pullman, E. P. & Kao, K. J. (1983) Genetic selection, general characterization, and histology of atherosclerosis-susceptible and -resistant Japanese quail. Atherosclerosis 49, 4153.Google Scholar
Siedel, J., Hagele, E. O., Ziegenhorn, J. & Wahlefeld, A. W. (1983) Reagent for the enzymatic determination of serum cholesterol with improved lipolytic efficiency. Clinical Chemistry 29, 10751080.Google Scholar
Skúladóttir, G. V., Shi-Hua, D., Brodie, A. E., Reed, D. J. & Wander, R. C. (1994) Effects of dietary oils and methyl ethyl ketone peroxide on in vivo lipid peroxidation and antioxidants in rat heart and liver. Lipids 29, 351357.CrossRefGoogle ScholarPubMed
Smith, R. L. & Hilker, D. M. (1973) Experimental dietary production of aortic atherosclerosis in Japanese quail. Atherosclerosis 17, 6370.CrossRefGoogle ScholarPubMed
Stringer, M. D., Görög, P. G., Freeman, A. & Kakkar, V. V. (1989) Lipid peroxides and atherosclerosis. British Medical Journal 298, 281284.Google Scholar
Stucchi, A. F., Hennessy, L. K., Vespa, D. B., Weiner, E. J., Osada, J., Ordovas, J. M., Schaefer, E. J. & Nicolosi, R. J. (1991) Effect of corn and coconut oil-containing diets with and without cholesterol on high density lipoprotein apoprotein A-I metabolism and hepatic apoprotein A-I mRNA levels in cebus monkeys. Arteriosclerosis and Thrombosis 11, 17191729.CrossRefGoogle ScholarPubMed
Sundram, K., Hayes, K. C. & Siru, O. H. (1994) Dietary palmitic acid results in a lower serum cholesterol than a lauric-myristic acid combination in normolipemic humans. American Journal of Clinical Nutrition 59, 841846.CrossRefGoogle Scholar
Sundram, K., Hayes, K. C. & Siru, O. H. (1995) Both dietary 18:2 and 16:0 may be required to improve the serum LDL/HDL cholesterol ratio in normocholesterolemic men. Journal of Nutritional Biochemistry 6, 179187.Google Scholar
Takayama, M., Itoh, S., Nagasaki, T. & Tanimizu, I. (1977) A new enzymatic method for determination of serum choline-containing phospholipids. Clinica Chimica Acta 79, 9398.Google ScholarPubMed
Terpstra, A. H. M., Woodward, C. J. K. & Sanchez-Muniz, F. J. (1981) Improved techniques for the separation of serum lipoproteins by density gradient ultracentrifugation. Visualization by prestaining and rapid separation of serum lipoproteins from small volumes of serum. Analytical Biochemistry 111, 149157.Google Scholar
Winterbourn, C. C., Hawkins, R. E., Brian, M. & Carrell, R. W. (1975) The estimation of red cell superoxide dismutase activity. Journal of Laboratory and Clinical Medicine 85, 337341.Google Scholar
Wood, R., Kubena, K., O'Brien, B., Tseng, S. & Martin, G (1993) Effect of butter, mono- and polyunsaturated fatty acid-enriched butter, trans fatty acid margarine, and zero trans fatty acid margarine on serum lipids and lipoproteins in healthy men. Journal of Lipid Research 34, 111.CrossRefGoogle ScholarPubMed
Woollett, L. A., Spady, D. K., Dietschy, J. M. (1992) Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. Journal of Lipid Research 33, 7788.Google Scholar
Yuan, Y. V., Kitts, D. D. & Godin, D. V. (1996) Heart and red blood cell antioxidant status and plasma lipid levels in the spontaneously hypertensive and normotensive Wistar-Kyoto rat. Canadian Journal of Physiology and Pharmacology 74, 290297.Google ScholarPubMed
Ziegenhorn, J. (1975) Improved method for enzymatic determination of serum triglycerides. Clinical Chemistry 21, 16271629.CrossRefGoogle ScholarPubMed