Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T00:50:26.890Z Has data issue: false hasContentIssue false

Impairment of cysteine synthesis from methionine in rats exposed to surgical stress

Published online by Cambridge University Press:  09 March 2007

José Viña
Affiliation:
Departamento de Fisiología, Facultad de Medicina, Av. Blasco Ibañez 17, Valencia-46010, Spain
Angel Gimenez
Affiliation:
Servicio de Cirugía, Hospital de la Marina Alta, Denia, Spain
Inmaculada R. Puertes
Affiliation:
Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina y Farmacia, Av. Blasco Ibañez 15, 17 Valencia-46010, Spain
Esperanza Gasco
Affiliation:
Departamento de Fisiología, Facultad de Medicina, Av. Blasco Ibañez 17, Valencia-46010, Spain
Juan R. Viña
Affiliation:
Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina y Farmacia, Av. Blasco Ibañez 15, 17 Valencia-46010, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The activity of liver cystathionase (EC 4.4.1.1) was decreased after 3 d of stress induced by surgery. The rate of l-cysteine synthesis from l-methionine was significantly higher in isolated hepatocytes from controls than in hepatocytes from rats suffering from surgical stress. The half-life of l-[2(n)-3H]methionine was significantly higher in rats submitted to surgical stress than in controls. Plasma l-methionine: l-cystine ratio was higher in stressed rats than in controls. l-cystine uptake was significantly increased in the surgically-stressed rats when compared with the controls. All these facts are consistent with the hypothesis that the observed inhibition of cystathionase is physiologically important and thatl-cysteine might be considered as an essential amino acid in cases of surgical stress.

Type
Amino Acid Metabolism
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Berry, M. N. & Friend, D. S. (1969). High yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. Journal of Cellular Biology 43, 506520.Google Scholar
Cooper, A. J. L. (1983). Biochemistry of sulphur-containing amino acids. Annual Review of Biochemistry 52, 187222.Google Scholar
Gaitonde, M. K. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochemical Journal 104, 627633.Google Scholar
García, E., Schwartz, S., Farriol, M., Lopez, J. & Andreu, A. L. (1989). Intracellular hepatic amino acids in post-surgical stress. Journal of Clinical Nutrition and Gastroenterology 4, 117121.Google Scholar
Greenway, C. V. & Stark, R. D. (1971). Hepatic vascular bed. Physiological Reviews 51, 2365.CrossRefGoogle ScholarPubMed
Hagen, T. M. & Jones, D. P. (1987). Transepithelial transport of glutathione in vascularly perfused small intestine of the rat. American Journal of Physiology 252, G 606–G 613.Google Scholar
Hamilton, P. B. (1973). Free amino acids in blood plasma of newborn infants and adults. Handbook of Biochemistry B-100. Boca Raton, FL, USA: CRC Press.Google Scholar
Heinonen, K. (1973). Studies on cystathionase activity in rat liver and brain during development. Effects of hormones and amino acids in vivo. Biochemical Journal 136, 10111015.Google Scholar
Horowitz, J. H., Rypins, E. B., Henderson, J. M., Heymsfield, S. B., Moffit, S. D., Bain, R. P., Chawla, R. K., Bleier, J. C. & Rudman, D. (1981). Evidence for impairment of transsulfuration pathway in cirrhosis. Gastroenterology 81, 668675.CrossRefGoogle ScholarPubMed
Jackson, A. A. (1983). Amino acids; essential and non-essential? Lancet 1, 10341037.CrossRefGoogle ScholarPubMed
Jackson, A. A. (1989). Optimizing amino acid and protein supply and utilization in the newborn. Proceedings of the Nutrition Society 48, 293301.CrossRefGoogle ScholarPubMed
Jurgens, P. (1982). Der postoperative Aminosaurenstoffwechsel. (Amino acid turnover in the post-operative state). Infusionstherapie 9, 7485.Google Scholar
Labrosse, E., Beech, J. A., McLaughlin, J. S., Mansberger, A. R., Keene, W. D. & Cowley, R. A. (1967). Plasma amino acids in normal humans and patients with shock. Surgery, Gynecology and Obstetrics 55, 516520.Google Scholar
Mans, A. M., Biebuyck, J. F., Shelly, K. & Hawkins, R. A. (1982). Regional blood-brain barrier permeability to amino acids after portacaval anastomosis. Journal of Neurochemistry 38, 705717.CrossRefGoogle ScholarPubMed
Milakofsky, L., Miller, J. M. & Vogel, W. H. (1986). Effects of acute ethanol administration on rat plasma amino acids and related compounds. Biochemical Pharmacology 35, 38853888.CrossRefGoogle ScholarPubMed
Neuhauser, M., Grotz, K. A., Wandira, J. A., Bassler, K. H. & Langer, K. (1986). Utilization of methionine and N-acetyl-cysteine during long-term parenteral nutrition in the growing rat. Journal of Clinical Investigation 35, 869873.Google ScholarPubMed
Remesar, X., Arola, L., Palou, A., Herrera, E. & Alemany, M. (1981). Plasma amino acids in hypothyroid and hyperthyroid rats. Hormone and Metabolic Research 13, 3841.Google Scholar
Rémésy, C., Demigne, C. & Autreri, J. (1978). Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochemical Journal 170, 321329.CrossRefGoogle Scholar
Romero, F. J. & Viña, J. (1983). A simple procedure to prepare isolated hepatocytes. Biochemical Education 11, 135136.CrossRefGoogle Scholar
Rose, W. C. & Wixom, R. L. (1955). The amino acid requirement of man. XIII The sparing effect of cystine on the methionine requirement. Journal of Biological Chemistry 216, 763773.CrossRefGoogle ScholarPubMed
Saez, G., Thornalley, P. J., Hill, H. A. O., Hems, R. & Bannister, J. V. (1982). The production of free radicals during the autoxidation of cysteine and their effect on isolated rat hepatocytes. Biochimica et Biophysica Acta 719, 2431.CrossRefGoogle ScholarPubMed
Soley, M. & Alemany, M. (1980). Amino acid concentrations in the plasma, serum and whole blood of the rat: Blood amino acid compartmentation. ICRS Medical Science 8, 159160.Google Scholar
Stein, W. H. & Moore, S. (1954). The free amino acids of human blood plasma. Journal of Biological Chemistry 19, 915926.CrossRefGoogle Scholar
Sturman, J. A., Gaull, G. & Raiha, N. C. R. (1970). Absence of cystathionase in human fetal liver: Is cystine essential? Science 169, 7475.CrossRefGoogle ScholarPubMed
Viña, J., Hems, R. & Krebs, H. A. (1978). Maintenance of glutathione content of isolated hepatocytes. Biochemical Journal 170, 627630.CrossRefGoogle Scholar
Viña, J., Perez, C., Furukawa, T., Palacin, M. & Viña, J. R. (1989). Effect of oral glutathione on hepatic glutathione levels. British Journal of Nutrition 62, 683691.CrossRefGoogle ScholarPubMed
Viña, J., Puertes, I. R., Estrela, J. M., Viña, J. R. & Galbis, J. L. (1981). Involvement of gamma-glutamyl transferase in amino acid uptake by the lactating mammary gland of the rat. Biochemical Journal 194, 99102.CrossRefGoogle ScholarPubMed
Viña, J., Puertes, I. R., Montoro, J. B. & Viña, J. R. (1983). Effect of specific inhibition of gamma-glutamyl transpeptidase on amino acid uptake by mammary gland of the lactating rat. FEBS Letters 159, 119122.CrossRefGoogle ScholarPubMed
Viña, J. R., Puertes, I. R., Rodriguez, A., Sáez, G. T. & Viña, J. (1987). Effect of physiological starvation on amino acid metabolism by lactating mammary gland. Studies in women and rats. Journal of Nutrition 117, 533538.CrossRefGoogle Scholar
Viña, J. R. & Williamson, D. H. (1981). Effects of lactation on l-leucine metabolism in the rat. Biochemical Journal 194, 941947.Google Scholar
Zlotkin, S. H., Bryan, M. H. & Anderson, G. H. (1981). Cysteine supplementation to cysteine-free intravenous feeding regimens in newborn infants. American Journal of Clinical Nutrition 34, 914923.CrossRefGoogle ScholarPubMed