Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T14:43:49.050Z Has data issue: false hasContentIssue false

Identification of thiomolybdates in digesta and plasma from sheep after administration of 99Mo-labelled compounds into the rumen

Published online by Cambridge University Press:  09 March 2007

J. Price
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
A. Marie Will
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
G. Paschaleris
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
J. K. Chesters
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. At 16 h after the rapid injection of 99Mo-labelled compounds into the rumen of sheep maintained on dried grass (6.2 mg molybdenum/kg dry matter (DM), 4.3 g sulphur/kg DM), labelled thiomolybdates associated with the digesta solids or bound to plasma macromolecular species were displaced from their carriers in vitro and identified by Sephadex G25 chromatography.

2. After molybdate injection, the thiomolybdates displaced from rumen, duodenal and ileal solids were predominantly the trithio- and tetrathio- species. Dithiomolybdate was present to a relatively minor extent. Trace amounts of di- and trithiomolybdates were detected in the liquid phase of digesta from the duodenum.

3. Whether injected into the rumen as molybdate or tetrathiomolybdate, bound 99Mo appearing in plasma was present mainly as di- and trithio- species. The tetrathio- species appeared in trace amounts in plasma only after tetrathiomolybdate injection, despite its existence almost exclusively in this form in rumen digesta.

4. The present study provides direct evidence for thiomolybdate synthesis within the rumen and indicates that while the effects of thiomolybdates in inhibiting copper absorption are likely to be due to tri- and tetrathio- molybdates, post-absorptive effects on Cu metabolism are probably due to di- or trithiomolybdate.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Aymonino, P. J., Ranade, A. C., Diemann, E. & Muller, A. (1969). Zeitschrqt fur Anorganische and Allgemeine Chemie 371, 300330.Google Scholar
Bray, A. C., Suttle, N. F. & Field, A. C. (1982). Proceedings of the Nutrition Society 41, 67A.CrossRefGoogle Scholar
Bremner, I., Mills, C. F. & Young, B. W. (1982). Journal of Inorganic Biochemistry 16, 109119.CrossRefGoogle Scholar
Chesters, J. K., Mills, C. F. &Price, J. (1985). In Proceedings of the 5th International Symposium on Trace Elements in Man and Animals, pp., 351355 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Clarke, N. J. & Laurie, S. H. (1979). Journal of lnorganic Biochemistry 12, 3745.Google Scholar
Clarke, N. J. & Laurie, S. H. (1982). Inorganica Chimica Acta 66, 3538.CrossRefGoogle Scholar
Dick, A. T., Dewey, D. W. & Gawthorne, J. M. (1975). Journal of Agricultural Science, Cambridge 85, 567568.CrossRefGoogle Scholar
El-Gallad, T. T., Mills, C. F., Bremner, I. & Summers, R. (1983). Journal of Inorganic Biochemistry 18, 323334.CrossRefGoogle Scholar
Grace, N. D. & Suttle, N. F. (1979). British Journal of Nutrition 41, 125136.CrossRefGoogle Scholar
Harmer, M. A. & Sykes, A. G. (1980). Inorganic Chemistry 19, 28812885.CrossRefGoogle Scholar
Hynes, M., Woods, M., Poole, D., Rogers, P. & Mason, J. (1985). Journal of Inorganic Biochemistry 24, 279288.CrossRefGoogle Scholar
Kelleher, C. A., Ivan, M., Lamand, M. & Mason, J. (1983). Journal of Comparative Pathology 93, 8392.CrossRefGoogle Scholar
Mason, J., Kelleher, C. A. & Letters, J. (1982). British Journal of Nutrition 48, 391397.CrossRefGoogle Scholar
Mason, J., Lamand, M. & Kelleher, C. A. (1980). British Journal of Nutrition 43, 515523.CrossRefGoogle Scholar
Mills, C. F., Bremner, I., El-Gallad, T. T., Dalgarno, A. C. & Young, B. W. (1978). In Proceedings of the 3rd International Symposium on Trace Element Metabolism in Man and Animals, pp. 150158 [Kirchgessner, M., editor]. Weihenstephan: Arbeitskreis fur Tierernahrungsforschung.Google Scholar
Mills, C. F., El-Gallad, T. T., Bremner, I. & Wenham, G. (1981). Journal of Inorganic Biochemistry 14, 163175.CrossRefGoogle Scholar
Nicholson, J. (1984). Studies of copper-molybdenum-sulphur, copper-thiolate and copper imidazole complexes. PhD Thesis, University of Manchester.Google Scholar
Price, J. & Chesters, J. K. (1985). British Journal of Nutrition 53, 323336.CrossRefGoogle Scholar
Suttle, N. F. (1974). Proceedings of the Nutrition Society 33, 299305.CrossRefGoogle Scholar
Suttle, N. F. & Field, A. C. (1983). Journal of Comparative Pathology 93, 379389.CrossRefGoogle Scholar
Tridot, G. & Bernard, J. C. (1962). Acta Chimica Hungaria 34, 179191.Google Scholar
Zumft, G. (1978). European Journal of Biochemistry 91, 345350.CrossRefGoogle Scholar