Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T05:31:42.188Z Has data issue: false hasContentIssue false

The histology and in vivo sulphate uptake of epiphyseal cartilage in protein-depleted rats

Published online by Cambridge University Press:  09 March 2007

B. Shapiro
Affiliation:
Isotope and Immunoassay Laboratory, Department of Medicine, University of Cape Town Medical School, Observatory 7925, South Africa
B. Pimstone
Affiliation:
Isotope and Immunoassay Laboratory, Department of Medicine, University of Cape Town Medical School, Observatory 7925, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Weanling rats, aged 21 d, given a 40 g casein/kg diet for 25 d were compared with ‘age-matched’ controls given a 200 g casein/kg diet and with ‘weight-matched’ weanling controls.

2. The protein-malnourished rats demonstrated failure of weight gain and linear growth, hypoproteinaemia, hypoalbuminaemia and fatty liver.

3. Autoradiography of the tibia was carried out 24 h after intraperitoneal injection of Na235SO4 (0.1, 1.0, 2.0, 5, 10 μCi/g body-weight). Sections of tibia, humerus and costochondral junction were stained by haematoxylin and eosin, resorcin-crystal violet and picro-fuchsin, Alcian Blue at pH 0.1 and pH 2.5, Alcian Blue at pH 5.7 with magnesium chloride (0.1, 0.7, 1.0 m), and by Alcian Blue after ovine testicular hyaluronidase (EC 3.2.1.35) digestion. The width of the upper tibial epiphysis was measured and the histological and histochemical features of the epiphyses studied.

4. The incorporation of 35SO4 into the epiphyses of the protein-malnourished animals was markedly reduced. The chondrocytes were small and flattened with frequent pyknotic nuclei. The staining characteristics of the cartilagenous matrix was qualitatively similar in all animals. The epiphyses in malnutrition were found to be thin, all zones being affected. The upper tibial epiphyses (mean±sd; μm) were 202 ±46 for the protein-malnourished animals, 367±52 for age-matched controls and 578±40 for weight-matched controls.

5. The changes found resemble those after hypophysectomy and the possible hormonal factors are discussed.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Adams, P. & Berridge, F. R. (1969). Archs Dis. Childh. 44, 705.CrossRefGoogle Scholar
Berridge, F. R. & Prior, K. M. (1954). Spec. Rep. Ser. med. Res. Coun. no. 287, 119.Google Scholar
Boström, H. (1952). J. biol. Chem. 196, 477.Google Scholar
Chochinov, R. H. & Daughaday, W. H. (1976). Diabetes 25, 994.CrossRefGoogle Scholar
Culling, C. F. A. (1974). Handbook of Histopathological and Histochemical Techniques, 3rd ed., pp. 259314. London: Butterworth and Co.CrossRefGoogle Scholar
Davies, D. V. & Coupland, R. E. eds. (1967). Grey's Anatomy, 34th ed., pp. 3347. London: Longmans.Google Scholar
Deo, M. G., Sood, S. K. & Ramalingaswami, V. (1965). Arch. Path. 80, 14.Google Scholar
Dickerson, J. W. T. & John, P. M. V. (1969). Br. J. Nutr. 23, 917.CrossRefGoogle Scholar
Doumas, B. T., Watson, W. A. & Biggs, H. G. (1971). Clinica chim. Acta 31, 87.CrossRefGoogle Scholar
Dziewiatkowski, D. D. (1951). J. exp. Med. 93, 451.CrossRefGoogle Scholar
Dziewiatkowski, D. D. (1954). J. exp. Med. 99, 283.Google Scholar
Dziewiatkowski, D. D. (1964). Connective Tissue: Intercellular Macromolecules, 1st ed., pp. 215238. Boston, Mass.: Little Brown & Co.Google Scholar
Dziewiatkowski, D. D., DiFerrante, N., Bronner, F. & Okinaka, G. (1957). J. exp. Med. 106, 501.Google Scholar
Engfeldt, B. & Hjertquist, S. O. (1967). Acta Path. Microbiol. scand. 71, 219.CrossRefGoogle Scholar
Evans, H. M., Simpson, M. E., Marx, W. & Kibrick, E. (1943). Endocrinology 32, 13.Google Scholar
Freud, J., Levie, L. H. & Kroon, D. B. (1939). J. Endocr. 1, 56.Google Scholar
Grant, D. B., Hambley, J., Becker, D. & Pimstone, B. L. (1973). Archs Dis. Childh. 45, 596.CrossRefGoogle Scholar
Greenspan, F. S., Li, C. H., Simpson, M. E. & Evans, H. M. (1949). Endocrinology 45, 455.Google Scholar
Harper, A. E. (1959). J. Nutr. 68, 405.Google Scholar
Hazlewood, C. F. & Nichols, B. L. (1969). Bull. Johns Hopkins' Hosp. 125, 119.Google Scholar
Higginson, J. (1954). Metabolism 3, 392.Google Scholar
Ingalls, T. H. & Hayes, D. R. (1941). Endocrinology 29, 720.CrossRefGoogle Scholar
Jha, G. J., Deo, M. G. & Ramalingaswami, V. (1968). Am. J. Path. 53, 1111.Google Scholar
Kalk, W. J. & Pimstone, B. L. (1974). Br. J. Nutr. 32, 569.Google Scholar
le Roith, D. & Pimstone, B. L. (1973). Clin. Sci. 44, 305.Google Scholar
Lillie, R. D. & Ashburn, L. L. (1943). Arch. Path. 36, 432.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.Google Scholar
Phillips, L. S. & Young, H. S. (1976). Endocrinology 99, 304.CrossRefGoogle Scholar
Platt, B. S. & Stewart, R. J. C. (1962). Br. J. Nutr. 16, 483.CrossRefGoogle Scholar
Quintarelli, G., Scott, J. E. & Dellovo, M. C. (1964). Histochemie 4, 86.Google Scholar
Ray, R. D., Evans, H. M. & Becks, H. (1941). Am. J. Path. 17, 509.Google Scholar
Salmon, W. D. & Daughaday, W. H. (1957). J. Lab. clin. Med. 49, 825.Google Scholar
Silberberg, M. & Silberberg, R. (1940). Arch. Path. 30, 675.Google Scholar
Stead, R. H. & Brock, J. F. (1972). J. Nutr. 102, 1357.Google Scholar
Sweet, M. B. E. (1968). Stain Tech. 43, 79.CrossRefGoogle Scholar
Trowell, H. C., Davies, J. N. P. & Dean, R. F. A. (1954). Kwashiorkor. London: Edward Arnold Ltd.CrossRefGoogle ScholarPubMed
Weinkove, C., Weinkove, E. A. & Pimstone, B. L. (1976). Clin. Sci. mol. Med. 50, 153.Google Scholar