Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T09:34:24.888Z Has data issue: false hasContentIssue false

The histological effects of copper and zinc on chick embryo skeletal tissues in organ culture

Published online by Cambridge University Press:  10 January 2017

Joan R. Rest*
Affiliation:
Department of Animal Pathology, University of Cambridge, Cambridge CB3 0ES
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of copper and zinc on organ cultures of chick embryo cartilage and bone maintained in low-trace-metal, chemically defined media for up to 8 d were studied macro-scopically, histologically and histochemically. Length and wet-weight measurement of explants were assessed statistically.

2. No effects were found with Cu concentrations of 0·5–1·5 μg/ml medium. Between concentrations of 5 and 40μg Cu/ml medium, lengths and wet-weights of cartilage cultures decreased significantly (P < 0·001) compared with controls. The decrease was directly proportional to increasing Cu concentration, and that of the length was greater with increasing period of culture (P < 0·001).

3. With 5–20 μg Cu/ml medium cartilage and bone became yellow in colour, and chondrocytes were swollen, rounded and basophilic. They were detached from their lacunae and the quantity of matrix was reduced. Loss of alkaline phosphatase (EC 3.1.3.1) activity and disappearance of glycogen accompanied the degeneration. Osteogenesis ceased, cells failed to divide and mature, lost their enzymes and died. Cu did not accumulate in the bone matrix.

4. The direct toxic effects of Cu for cartilage and bone may underlie some of the skeletal changes in hepatolenticular degeneration (Wilson’s disease).

5. As Zn concentrations were increased from 2·5 to 7·5 μg/ml medium, lengths and wet-weights of cartilaginous cultures were significantly increased (P < 0·001). As Zn concentrations were further increased (from 10 to 40 μg/ml medium), lengths and wet-weights were significantly decreased (P < 0·001).

6. Zn stimulated chondrocyte division and vacuolation of cytoplasm. With higher Zn concentrations toxic changes of granular basophilia, lacunar detachment and necrosis were seen. Differentiation and functioning of osteoblasts, osteoclasts and chondroclasts were stimulated by Zn.

7. Zn was found in bone matrix, osteoblasts, osteocytes and hypertrophied chondrocytes.

Type
Papers on General Nutrition
Copyright
Copyright © The Authors 1976

References

Abbott, J. & Holtzer, H. (1966). J. Cell Biol. 28, 473.CrossRefGoogle Scholar
Andrew, W. (1955). J. Getont. 10, 1.CrossRefGoogle Scholar
Andrew, W. (1971). The Anatomy of Ageing in Man and Animals, p. 94. New York and London: Grune and Stratton.CrossRefGoogle Scholar
Asling, C. W. & Hurley, L. S. (1963). Clin. Orthop. 27, 213.Google Scholar
Barka, T., Scheuer, P. J., Schaffner, F. & Popper, D. (1964). Archs Path. 78, 331.Google Scholar
Baxter, J. H., Van Wyk, J. J. & Folks, R. H. Jr (1953). Bull. Johns Hopkins Hosp. 93, 25.Google Scholar
Beam, A. G. & Kunkel, H. J. (1954). Proc. Soc. exp. Biol. Med. 85, 44.Google Scholar
Bennetts, H. W. (1932). Aust. vet. J. 8, 137.CrossRefGoogle Scholar
Biggers, J. D., Gwatkin, R. B. L. & Heyner, S. (1961). Expl. Cell Res. 25, 41.CrossRefGoogle Scholar
Blamberg, D. L., Blackwood, U. B., Supplee, W. C. & Combs, G. F. (1960). Proc. Soc. exp. Biol. Med. 104, 217.CrossRefGoogle Scholar
Brink, M. F., Becker, D. E., Terrill, S. W. & Jenson, A. H. (1959). J. Anim. Sci. 18, 836.CrossRefGoogle Scholar
Bryan, J. (1968). Expl Cell Res. 52, 319.CrossRefGoogle Scholar
Boudin, G. & Pepin, B. (1961). In Wilson’s Disease. Some Current Concepts, p. 233 [Walshe, J. M. and Cumings, J. N., editors]. Oxford: Blackwell Scientific Publications.Google Scholar
Calhoun, N. R., Smith, J. C. & Becker, K. L. (1974). Clin. Orthop. 103, 212.CrossRefGoogle Scholar
Carleton, H. M. (1967). Carleton’s Histological Technique, 4th ed., [Drury, R.A.B. and Wallington, E. A., editors]. Oxford: Oxford University Press.Google Scholar
Carlton, W. W. & Henderson, W. (1964). Avian Dis. 8, 48.CrossRefGoogle Scholar
Chesters, J. K. (1974). In Trace Element Metabolism in Animals, vol. 2, p. 39 [Hoekstra, W. G., Suttie, J. W., Ganther, H. E. and Mertz, W., editors]. Baltimore, Maryland: University Park Press.Google Scholar
Cunningham, I. J. (1950). In Symposium on Copper Metabolism, p. 246 [McElroy, W. D. and Glass, H. Bentley, editors]. Baltimore, Maryland: The Johns Hopkins Press.Google Scholar
Daniel, M., Dingle, J. T., Webb, M. & Heath, J. C. (1963). Br. J. exp. Path. 44, 163.Google Scholar
Diamond, I. & Hurley, L. S. (1970). J. Nutr. 100, 325.CrossRefGoogle Scholar
Falchuk, K. H., Fawcett, D. W. & Vallee, B. L. (1975). J. Cell Sci. 17, 57.CrossRefGoogle Scholar
Fell, H. B. (1925). J. Morph. 40, 417.CrossRefGoogle Scholar
Fell, H. B., Coombes, R. R. A. & Dingle, J. T. (1966). Int. Archs Allergy appi. Immun. 30, 146.CrossRefGoogle Scholar
Fell, H. B. & Mellanby, E. (1952). J. Physiol., Lond. 116, 320.CrossRefGoogle Scholar
Fell, H. B. & Thomas, L. (1960). J. exp. Med. 111, 719.CrossRefGoogle Scholar
Finby, N. & Beam, A. G. (1958). Am. J. Roentg. 79, 603.Google Scholar
Follis, R. H. Jr & Berthrong, M. (1949). Bull. Johns Hopkins Hosp. 85, 281.Google Scholar
Follis, R. H. Jr, Bush, J. A., Cartwright, G. E. & Wintrobe, M. M. (1955). Bull. Johns Hopkins Hosp. 97. 405.Google Scholar
Follis, R. H. Jr, Day, H. G. & McCollum, E. V. (1941). J. Nutr. 22, 223.CrossRefGoogle Scholar
Ford, J. K., Eyring, E. J. & Anderson, C. E. (1968). J. Bone Jt Surg. 50A, 687.CrossRefGoogle Scholar
Gallagher, C. H. (1957). Aust. vet. J. 33, 311.CrossRefGoogle Scholar
Goldfischer, S. & Sternlieb, I. (1968). Am. J. Path. 53, 883.Google Scholar
Gomori, G. (1952). Microscopic Histochemistry, p. 42. Chicago: University of Chicago Press.Google Scholar
Grimmett, R. E. R., McIntosh, I. G., Wall, E. M. & Hopkirk, C. S. M. (1937). N.Z. JI Agric. 54, 216.Google Scholar
Ham, R. G. (1963). Expl Cell Res. 29, 515.CrossRefGoogle Scholar
Ham, R. G. (1965). Proc. natn. Acad. Sci. U.S.A. 53, 288.CrossRefGoogle Scholar
Hartley, W. J., Kater, J. C. & Mackay, A. (1963). N.Z. vet. J. 11, 1.CrossRefGoogle Scholar
Haumont, S. (1961). J. Histochem. Cytochem. 9, 141.CrossRefGoogle Scholar
Herovici, C. (1963). Stain Technol. 38, 204.Google Scholar
Hoekstra, W. G. (1969). Am. J. clin. Nutr. 22, 1268.CrossRefGoogle Scholar
Hurley, S. & Swenerton, H. (1966). Proc. Soc. exp. Biol. Med. 123, 692.CrossRefGoogle Scholar
Huxley, H. G. & Leaver, A. G. (1966). Archs oral Biol. 11, 1337.CrossRefGoogle Scholar
James, L. F., Lazar, V. A. & Binns, W. (1966). Am. J. vet. Res. 27, 132.Google Scholar
Kienholz, E. W., Turk, D. E., Sunde, M. L. & Hoekstra, W. G. (1961). J. Nutr. 75, 211.CrossRefGoogle Scholar
Lacroix, P. (1961). In The Cell, vol. 5, p. 246 [Brachet, J. and Mirsky, A. E., editors]. New York and London: Academic Press.Google Scholar
Lahey, M. E., Gubler, C. J., Chase, M. S., Cartwright, G. E. & Wintrobe, M. M. (1952). Blood, 7, 1053.CrossRefGoogle Scholar
Leucke, R. W., Baltzer, B V. & Whitenack, D. L. (1974). In Trace Element Metabolism in Animals, vol. 2, p. 719 [Hoekstra, W. G., Suttie, J. W., Ganther, H. E. and Mertz, W., editors]. Baltimore, Maryland: University Park Press.Google Scholar
Macapinlac, M. P., Pearson, W. N. & Darby, W. J. (1966). In Zinc Metabolism, p. 142 [Prasad, A. S., editor]. Springfield, Illinois: Charles Thomas.Google Scholar
Mills, C. F., Quarterman, J., Chesters, J. K., Williams, R. B. & Dalgarno, A. C. (1969). Am. J. clin. Nutr. 22, 1240.CrossRefGoogle Scholar
Morgan, H. G., Stewart, W. K., Lowe, K. G., Stowers, J. M. & Johnstone, J. H. (1962). Q. Jl Med. 31, 361.Google Scholar
Morrison, A. B. & Sarett, H. P. (1958). J. Nutr. 65, 267.CrossRefGoogle Scholar
Nameroff, M. & Holtzer, H. (1967). Devl Biol. 16, 250.CrossRefGoogle Scholar
O’Dell, B. L., Hardwick, B. C. & Reynolds, G. (1961). J. Nutr. 73, 151.CrossRefGoogle Scholar
O’Dell, B. L., Newberne, P. M. & Savage, J. E. (1958). J. Nutr. 65, 503.CrossRefGoogle Scholar
Paul, J. (1965). Cell and Tissue Culture, 3rd ed., p. 184. Edinburgh and London: E. & S. Livingstone Ltd. Google Scholar
Pearse, A. G. E. (1960). Histochemistry Theoretical and Applied, 2nd ed. London: J. & A. Churchill Ltd. Google Scholar
Prasad, A. S. & Oberleas, D. (1971). J. appl. Physiol. 31, 842.CrossRefGoogle Scholar
Prasad, A. S., Oberleas, D. & Halsted, J. A. (1965). J. Lab. clin. Med. 66, 508.Google Scholar
Prasad, A. S., Oberleas, D., Wolf, P. & Horwitz, J. P. (1967). J. clin. Invest. 46, 549.CrossRefGoogle Scholar
Prasad, G. C. & Reynolds, J. J. (1968). J. Bone Jt Surg. 50B, 401.CrossRefGoogle Scholar
Rest, J. R. (1970). A histological study of the effects of copper and zinc on organ culture of chick embryo cartilage and bone. PhD Thesis, University of Cambridge.Google Scholar
Reynolds, J. J. (1967). Expl Cell Res. 47, 42.CrossRefGoogle Scholar
Rosenoer, V. M. & Michell, R. C. (1959). Br. J. Radial. 32, 805.CrossRefGoogle Scholar
Rucker, R. B., Parker, H. E. & Rogier, J. C. (1969). J. Nutr. 98, 57.CrossRefGoogle Scholar
Sampson, J., Graham, R. & Hestin, H. R. (1942). Cornell Vet. 32, 225.Google Scholar
Savage, J. E. (1968). Fedn Proc. Fedn Am. Socs exp. Biol. 27, 927.Google Scholar
Shulman, H. J. & Meyer, K. (1968). J. exp. Med. 128, 1353.CrossRefGoogle Scholar
Silberberg, R., Silberberg, M., Vogel, A. & Wettstein, W. (1961). Am. J. Anat. 109, 251.CrossRefGoogle Scholar
Sledge, C. B. & Dingle, J. T. (1965). Nature, Lond. 205, 140.CrossRefGoogle Scholar
Starcher, B & Kratzer, F. H. (1963). J. Nutr. 79, 18.CrossRefGoogle Scholar
Stewart, A. K. & Magee, A. C. (1964). J. Nutr. 82, 287.CrossRefGoogle Scholar
Suttie, N. F., Angus, K. W., Nisbet, D. I. & Field, A. C. (1972). J. comp. Path. 82, 93.CrossRefGoogle Scholar
Teague, H. S. & Carpenter, L. E. (1951). J. Nutr. 43, 389.CrossRefGoogle Scholar
Thomas, J. A. & Johnson, M. J. (1967). J. natn. Cancer Inst. 39, 337.Google Scholar
Vincent, J. (1963). Clin. Orthop. 26, 161.Google Scholar
Walshe, J. M. (1968). Proc. Nutr. Soc. 27, 107.CrossRefGoogle Scholar
Wegner, W. S. & Romano, A. H. (1963). Science, N.Y. 142, 1669.CrossRefGoogle Scholar
Westmoreland, N. & Hoekstra, W. G. (1969 b). J. Nutr. 98, 76.CrossRefGoogle Scholar
Westmoreland, N. & Hoekstra, W. G. (19696). J. Nutr. 98, 83.CrossRefGoogle Scholar
Williams, R. B. & Chesters, J. K. (1970). Br. J. Nutr. 24, 1053.CrossRefGoogle Scholar
Young, R. J., Edwards, H. M. Jr & Gillis, M. B. (1958). Poult. Sci. 37, 1100.CrossRefGoogle Scholar
Young, R. W. (1963). Clin. Orthop. 26, 147.Google Scholar
Zeigler, T. R., Scott, M. L., McEvoy, R. K., Greenlaw, R. H., Huegin, F. & Strain, W. H. (1962). Proc. Soc. exp. Biol. Med. 109, 239.CrossRefGoogle Scholar