Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T20:02:07.947Z Has data issue: false hasContentIssue false

Hepatic copper–and zinc-binding proteins in ruminants

2. Relationship between Cu and Zn concentrations and the occurrence of a metallothionein-like fraction*

Published online by Cambridge University Press:  24 July 2007

I Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen, AB2 9SB
R. B Marshall
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen, AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A study has been made by gel-filtration techniques of the soluble copper- and zinc-binding proteins in livers from calves and sheep of widely differing Cu and Zn status.

2. Cu and Zn generally occurred together in three main fractions, with approximate molecular weights of > 75000, 35000 and 12000, and Zn also in one other fraction with molecular weight about 65000. The distribution of the metals between these fractions was variable and dependent on both the Cu and Zn status of the animals.

3. Zn was usually absent from the low-molecular-weight fraction in Zn-deficient or high-Cu livers, with Cu also being absent in the former instance.

4. The fraction with molecular weight of 35000 was tentatively identified as hepatocuprein. It generally accounted for only 4% of the total hepatic Cu except in Cu-deficient livers.

5. The possible relationship of these findings to the mutual antagonism between Cu and Zn is discussed.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Bremner, I. & Davies, N. T. (1974). Biochem. Soc. Trans. 2, 425.CrossRefGoogle Scholar
Bremner, I., Davies, N. T. & Mills, C. F. (1973). Biochem. Soc. Trans. 1, 982.CrossRefGoogle Scholar
Bremner, I. & Marshall, R. B. (1974). Br. J. Nutr. 32, 283.CrossRefGoogle Scholar
Davies, N. T., Bremner, I. & Mills, C. F. (1973). Biochem. Soc. Trans. 1, 985.CrossRefGoogle Scholar
Davis, B. J. (1964). Ann. N. Y. Acad. Sci. 121, 404.CrossRefGoogle Scholar
Evans, G. W., Majors, P. F. & Cornatzer, W. E. (1970). Biochem. biophys. Res. Commun. 40, 1142.CrossRefGoogle Scholar
Hill, C. H. & Matrone, G. (1970). Fedn Proc. Fedn Am. Socs exp. Biol. 29, 1474.Google Scholar
Itzhaki, R. F. & Gill, D. M. (1964). Ann Biochem. 9, 401.CrossRefGoogle Scholar
Jocelyn, P. C. (1962). Biochem. J. 85, 480.CrossRefGoogle Scholar
Kägi, J. H. R. (1970). Abstr. 8th Int. Congr. Biochem. p. 130.Google Scholar
Kägi, J. H. R. & Vallee, B. L. (1960). J. biol. Chem. 235, 3460.CrossRefGoogle Scholar
Kägi, J. H. R. & Vallee, B. L. (1961). J. biol. Chem. 236, 2435.CrossRefGoogle Scholar
Moore, S. (1963). J. biol. Chem. 238, 235.CrossRefGoogle Scholar
Nordberg, G. F., Nordberg, M., Piscator, M. & Vesterberg, O. (1972). Biochem. J. 126, 491.CrossRefGoogle Scholar
Pulido, P., Kägi, J. H. R. & Vallee, B. L. (1966). Biochemistry, Easton 5, 1768.CrossRefGoogle Scholar
Suttle, N. F. & Mills, C. F. (1966). Br. J. Nutr. 20, 135.CrossRefGoogle Scholar
Van Reen, R. (1953). Archs Biochem. Biophys. 46, 337.CrossRefGoogle Scholar
Webb, M. (1972). Biochem. Pharmac. 21, 2751.CrossRefGoogle Scholar
Winge, D. R. & Rajagopalan, K. V. (1972). Archs Biochem. Biophys. 153, 755.CrossRefGoogle Scholar
Wisniewska, J. M., Trojanowska, B., Piotrowski, J. & Jakubowski, M. (1970). Toxic. appl. Pharmar. 16, 754.CrossRefGoogle Scholar