Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T01:53:46.498Z Has data issue: false hasContentIssue false

Granulated polyamide as external marker to estimate total faecal excretion of grazing cattle in extensive management systems

Published online by Cambridge University Press:  09 March 2007

Friedrich Mahler
Affiliation:
Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim, D-70593 Stuttgart, Germany
Eva Schlecht
Affiliation:
Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim, D-70593 Stuttgart, Germany
Mamadou Sangare
Affiliation:
Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim, D-70593 Stuttgart, Germany
Klaus Becker
Affiliation:
Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim, D-70593 Stuttgart, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Granulated polyamide (PA) was tested for use as an external marker to estimate faecal DM (FDM) excretion of Zebu cattle (Bos indicus). The study was conducted in Mali, using seven and eighteen animals respectively in four field trials and six indoor experiments. Cattle ate fresh or dry pasture vegetation and half the animals were additionally supplemented with crop byproducts. Gelatine capsules containing 35, 40 or 45 g PA were administered orally at 12 h intervals. Estimates of FDM were based on the average marker concentration in faeces and were correlated with the actual excretion measured by total faecal collection. The pre-measurement period required to establish equilibrium for regular marker dosing was determined at 4 d. Except for diets with a N content of less than 9·26 g/kg organic matter, marker recovery averaged 98·1 (se 0·93) % (n 62), and was not influenced by diet composition and the quantity of feed ingested (P > 0·05). Estimates of FDM based on average PA concentrations in faecal samples were correlated to the actual excretion with r 0·98 (n 62; P ≤ 0·001). Since the PA concentration in individual faecal grab-samples is not correlated with either sample mass or sampling time, accurate estimates of FDM require a grab-sampling schedule that covers the 24 h day. However, estimates of FDM were found to be acceptable if calculations are based on the average PA concentration in the sub-total of samples collected during the day or during night respectively (r 0·95, n 29; P ≤ 0·001 in both cases). It is concluded that the use of PA marker is a simple and inexpensive method resulting in reliable estimates of FDM. Since sophisticated analytical procedures are not required to recover PA in faecal samples, the marker is particularly suitable for application in extensive grazing systems and in studies conducted in less-developed countries.

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Agricultural Research Council (1980) The Nutrient Requirements of Ruminant Livestock. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Baran, M. & Boda, K. (1982) Die Brauchbarkeit von Polyäthylen für Geschwindigkeitsmessungen der Futterpassage durch den Verdauungstrakt der Wiederkäuer (The usefulness of polyethylene for rate of passage measurements of feeds through the digestive tract of ruminants). Archiv für Tierernährung 32, 199207.CrossRefGoogle Scholar
Brisson, G. J., Pidgen, W. J. & Sylvestre, P. E. (1957). Effect of frequency of administration of Cr2O3 on its faecal excretion patterns by grazing cattle. Canadian Journal of Animal Science 7, 9094.CrossRefGoogle Scholar
Campling, R. C. & Freer, M. (1962) The effect of specific gravity and size on the mean time of retention of inert plastic particles in the alimentary tract of the cow. British Journal of Nutrition 16, 507518.CrossRefGoogle Scholar
Chandler, P. T., Kesler, E. M. & Jones, G. M. (1966) Excretion of polyethylene by dairy calves. Journal of Animal Science 25, 6468.CrossRefGoogle ScholarPubMed
Cochran, R. C., Adams, D. C., Wallace, J. D. & Galyean, M. L. (1986) Predicting digestibility of different diets with internal markers: evaluation of four potential markers. Journal of Animal Science 63, 14761483.CrossRefGoogle Scholar
Cochran, R. C., Vanzant, E. S. & Del Curto, T. (1988) Evaluation of internal markers isolated by alkaline hydrogen peroxide incubation and acid detergent lignin extraction. Journal of Animal Science 66, 32453251.CrossRefGoogle ScholarPubMed
Corbett, J. L., Greenhalgh, J. D. F., Gwynn, P. E. & Walker, D. (1958) Excretion of chromium sesquioxide and polyethyleneglycol by dairy cows. British Journal of Nutrition 12, 266275.CrossRefGoogle ScholarPubMed
Cordova, F. J., Wallace, D. J. & Pieper, R. D. (1978) Forage intake by grazing livestock: a review. Journal of Range Management 31, 430438.CrossRefGoogle Scholar
Des Bordes, C. K. & Welch, J. G. (1984) Influence of specific gravity on rumination and passage of indigestible particles. Journal of Animal Science 59, 470475.CrossRefGoogle Scholar
Dicko, M. S., Lambourne, J., de Leeuw, P. N. & de Haan, C. (1983). Nutrition animale – les bovins (Animal nutrition – cattle). In Recherches sur les systèmes des zones arides du Mali: résultats préliminaires. Rapport de Recherche no 5 (Research of Systems in the Arid Zones of Mali: Preliminary Results. Research Report no 5), pp. 9596 [Wilson, R. T., de Leeuw, P. N. and de Haan, C., editors]. Addis Ababa, Ethiopia: International Livestock Centre for Africa.Google Scholar
Dicko-Touré, M. S. (1980). Measuring the secondary production of pasture: an applied example in the study of extensive production systems in Mali. In Browse in Africa, The Current State of Knowledge, pp. 245251 [Le Houérou, H. N. editor]. Addis Ababa, Ethiopia: International Livestock Centre for Africa.Google Scholar
Fisher, D. S., Burns, J. C. & Pond, K. R. (1986). Sampling effects on grazing behaviour in marked forage trials. Agronomy Abstracts p. 141.Google Scholar
Harniss, R. O., Price, D. A. & Tomlin, D. C. (1975) Number of fistula samples needed for determination of sheep diet on sagebrush-grass range. Journal of Range Management 28, 417419.CrossRefGoogle Scholar
Hatfield, P. G., Clanton, D. C., Sanson, D. W. & Eskridge, K. M. (1990) Methods of administering ytterbium for estimation of faecal output. Journal of Range Management 43, 316320.CrossRefGoogle Scholar
Hayes, B. W., Little, C. O. & Mitchell, G. E. (1964) Influence of ruminal, abomasal and intestinal fistulation on digestion in steers. Journal of Animal Science 23, 764766.CrossRefGoogle Scholar
Holechek, J. L., Vavra, M. & Pieper, R. D. (1982) Methods for determining the nutritive quality of range ruminant diets: a review. Journal of Animal Science 54, 364375.Google Scholar
Kaske, M., Hatipoglu, S. & von Engelhardt, W. (1989) Rumination of particles of different size and densities in sheep. Acta Veterinaria Scandinavica 86, 5354.Google Scholar
Katoh, K., Sato, F., Yamazaki, A. & Tsuda, T. (1988) Passage of indigestible particles of various specific gravities in sheep and goats. British Journal of Nutrition 60, 683687.CrossRefGoogle ScholarPubMed
Kiesling, H. E., Barry, H. A., Nelson, A. B. & Herbel, C. H. (1969) Recovery of chromic oxide administered in paper to grazing steers. Journal of Animal Science 29, 361364.CrossRefGoogle ScholarPubMed
King, K. W. & Moore, W. E. C. (1957) Density and size as factors affecting rate of passage of ingesta in the bovine and human digestive tracts. Journal of Dairy Science 40, 528536.CrossRefGoogle Scholar
Knapka, J. J., Barth, K. M., Brown, D. G. & Cragle, R. G. (1967). Evaluation of polyethylene, chromic oxide and Cerium144 as digestibility indicators in burros. Journal of Nutrition 92, 7985.CrossRefGoogle ScholarPubMed
Kotb, A. R. & Luckey, D. T. (1972) Markers in nutrition. Nutrition Abstracts and Reviews 42, 813845.Google ScholarPubMed
Laby, R. H., Graham, C. A., Edwards, S. R. & Kautzner, B. (1984). A controlled release intraruminal device for the administration of faecal dry matter markers to the grazing ruminant. Canadian Journal of Animal Science 64, Suppl., 337338.CrossRefGoogle Scholar
Langlands, J. P. (1974). Techniques for estimating nutrient intake and its utilisation by the grazing ruminant. In Digestion and Metabolism in the Ruminant. Proceedings of the IVth International Symposium on Ruminant Physiology, pp. 320332 [McDonald, J. W. and Warner, A. C. J., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Lechner-Doll, M. & von Engelhardt, W. (1989) Particle size and passage from the forestomach in camels compared to cattle and sheep fed a similar diet. Journal of Animal Physiology and Animal Nutrition 61, 120128.CrossRefGoogle Scholar
Le Houérou, H. N. (1980). Composition chimique et valeur nutritive des fourrages ligneux en Afrique tropicale occidentale (Chemical composition and nutritional value of browse forages in tropical West Africa). In Les fourrages ligneux en Afrique – état actuel des connaissances (Browse Forages in Africa – The State of Knowledge), [Le Houérou, H. N. editor]. Addis Ababa, Ethiopia: International Livestock Centre for Africa.Google Scholar
Littell, R. C., Freund, R. J. & Spector, P. C. (1991). SAS System for Linear Models. 3rd ed. Cary, NC: SAS Institute Inc.Google Scholar
Little, D. A. (1972). The relation of the chemical composition of feed to that of the extruded bolus. Australian Journal of Experimental Agriculture and Animal Husbandry 12, 126130.CrossRefGoogle Scholar
Mayes, R. W., Dove, H., Chen, X. B. & Guanda, J. A. (1995). Advances in the use of faecal and urinary markers for measuring diet composition, herbage intake and nutrient utilisation in herbivores. In Recent Developments in the Nutrition of Herbivores. Proceedings of the IVth International Symposium on the Nutrition of Herbivores, pp. 381406 [Journet, M., Grenet, E., Farce, M.-H., Theriez, M. and Demarquilly, C. editors] Paris: INRA Editions.Google Scholar
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. & Schneider, W. (1979) The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, Cambridge 93, 217222.CrossRefGoogle Scholar
Meuret, M., Bartiaux-Thill, N. & Bourbouze, A. (1985) Evaluation de la consommation d'un troupeau de chèvres latières sur parcours forestier -méthode d'observation directe des coups de dents – Méthode du marqueur oxyde de chrome (Evaluation of feed intake of a herd of milking goats on woodland pasture – method of direct observation of bites – method of chromic oxide marker). Annales de Zootechnie 34, 159180.CrossRefGoogle Scholar
Moran, J. B., Satoto, K. B. & Dawson, J. E. (1983) The utilization of rice straw fed to Zebu cattle and Swamp buffalo as influenced by alkali treatment and Leucaena supplementation. Australian Journal of Agricultural Research 34, 7384.CrossRefGoogle Scholar
Murphy, M. R. & Kennedy, P. M. (1993). Particle dynamics. In Quantitative Aspects of Ruminant Digestion and Metabolism, pp. 87105 [Forbes, J. M. and France, J., editors] Wallingford, Oxon: CAB INTERNATIONAL.Google Scholar
Murphy, M. R., Kennedy, P. M. & Welch, J. G. (1989) Passage and rumination of inert particles varying in size and specific gravity as determined from analysis of faecal appearance using multicompartment models. British Journal of Nutrition 62, 481492.CrossRefGoogle ScholarPubMed
Naumann, K., Bassler, R., Seibold, R. & Barth, K. (1983) Methodenbuch Band III. Die chemische Untersuchung von Futtermitteln (Handbook of Methodology, Vol. 3. The Chemical Analysis of Forages). Neudamm, Germany: Verlag J. Neumann.Google Scholar
Oosting, S. J. & Waanders, A. (1993) The effect of rumen ammonia nitrogen concentration on intake and digestion of wheat straw by goats. Animal Feed Science and Technology 43, 3140.CrossRefGoogle Scholar
Pond, K. R., Ellis, W. C., Matis, J. H. & Deswysen, A. G. (1989) Passage of chromium mordanted and rare earth-labelled fibre: time of dosing kinetics. Journal of Animal Science 67, 10201028.CrossRefGoogle ScholarPubMed
Powell, J. M. & Mohamed-Saleem, M. A. (1987) Nitrogen and phosphorus transfer in a crop-livestock system in West Africa. Agricultural Systems 25, 261277.CrossRefGoogle Scholar
Prigge, E. C., Stuthers, B. A. & Jacquement, N. A. (1990) Influence of forage diets on ruminal particle size, passage of digesta, feed intake and digestibility by steers. Journal of Animal Science 68, 43524360.CrossRefGoogle ScholarPubMed
Putnam, P. A., Loosli, J. K. & Warner, R. G. (1958) Excretion of chromium oxide by dairy cows. Journal of Dairy Science 41, 17231729.CrossRefGoogle Scholar
Raymond, W. F. & Minson, D. J. (1955) The use of chromic oxide for estimating the faecal production of grazing animals. Journal of the British Grassland Society 10, 282296.CrossRefGoogle Scholar
Reid, J. T., Woolfolk, P. G., Hardison, W. A., Martin, C. M., Brundage, A. L. & Kaufmann, R. W. (1952) A procedure for measuring the digestibility of pasture forage under grazing conditions. Journal of Nutrition 46, 255269.CrossRefGoogle ScholarPubMed
Rittenhouse, L. R., Clanton, D. C. & Streeter, C. L. (1970) Intake and digestibility of winter range forage by cattle with and without supplements. Journal of Animal Science 31, 12211251.CrossRefGoogle Scholar
Scales, G. H., Streeter, C. L., Denham, A. H. & Ward, G. M. (1974) Effect of mastication, salivary contamination and leaching on the chemical composition of forage samples collected via esophageal fistulae. Journal of Animal Science 38, 12781283.CrossRefGoogle Scholar
Statistical Analysis Systems (1989) SAS/STAT Users Guide, Version 6, 4th ed., Vol. 2. Cary, NC: SAS Institute Inc.Google Scholar
Welch, J. G. (1990) Inert plastics as indicators of physiological processes in the gastrointestinal tract of ruminants. Journal of Animal Science 68, 29312935.CrossRefGoogle ScholarPubMed
Whittington, D. L. & Hansen, R. M. (1985) Oesophageal- and rumen-fistulated animals for range livestock research in remote areas. World Animal Review 56, 4550.Google Scholar
Whittington, D. L., Turner, H. A. & Raleigh, R. J. (1978) Evaluation of chromic oxide, lignin, crude fibre, nitrogen and indigestible dry matter as indicators to determine faecal production and forage intake. Proceedings of the American Society of Animal Science 29, 15.Google Scholar