Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T12:36:51.088Z Has data issue: false hasContentIssue false

Glucose production and utilization in non-pregnant, pregnant and lactating ewes

Published online by Cambridge University Press:  09 March 2007

Stephen Wilson
Affiliation:
Hill Farming Research Organisation, Bush Estate, Penicuik, Midlothian EH26 0PY
J. C. MacRae
Affiliation:
Department of Energy Metabolism, Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
P. J. Buttery
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, Leicestershire LE12 5RD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. By using continuous infusions of 3H- and 14C-labelled substrates, three-pool models, incorporating rumen propionate, plasma glucose and blood carbon dioxide were constructed to determine the contribution of propionate to glucose in non-pregnant, pregnant (mid and late) and lactating hill ewes.

2. Although the intakes of non-pregnant and pregnant ewes were the same (1200 g driedgrass/d) and resulted in similar levels of propionate production (33 g C/d), glucose production rate (GPR) increased from 44 g C/d in the non-pregnant ewes to 62 g C/d in the ewes carrying twins in late pregnancy. In lactating ewes given 2500 g dried grass/d, propionate production increased to 56 g C/d and GPR increased to 93 and 104 g C/d in ewes suckling single and twin lambs respectively.

3. There was an increase in the percentage of the propionate resource which was diverted to glucose, from 37% in the non-pregnant ewes and ewes in mid-pregnancy, to 55% in late pregnancy and 60% in lactation. In spite of this apparent metabolic adaptation to the additional requirements for glucose, approximately 55% of the glucose-C was supplied by metabolites other than propionate and CO2.

4. From the determination of plasma glycerol concentrations it was estimated that themaximum possible contribution of glycerol-C to glucose was only 8–12 g C/d. Theremaining 40% of the glucose-C could not be accounted for and could have been derived from non-essential amino acids (NEAA).

5. In the non-pregnant and pregnant ewes only 62% of the GPR was oxidized to CO2. In the lactating ewes only 49 and 30% of the GPR was oxidized to CO2 in the ewes suckling single and twin lambs respectively.

6. In the majority of cases there was a marked similarity between the amounts of glucose-C apparently derived from NEAA and the amount of glucose-C which was not oxidized to CO2.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Bergman, E. N. (1968). American Journal of Physiology 215, 865873.CrossRefGoogle Scholar
Bergman, E. N. (1973). Cornell Veterinarian 63, 341382.Google Scholar
Bergman, E. N. & Heitmann, R. N. (1978). Federation Proceedings 37, 12281232.Google Scholar
Bergman, E. N., Roe, W. E. & Kon, K. (1966). American Journal of Physiology 211, 793799.CrossRefGoogle Scholar
Bergman, E. N. & Wolff, J. E. (1971). American Journal of Physiology 221, 586592.CrossRefGoogle Scholar
Bickerstaffe, R., Annison, E. F. & Linzell, J. L. (1974). Journal of Agricultural Science, Cambridge 82, 7185.CrossRefGoogle Scholar
Black, A. L. (1968). In Isotope Studies on the Nitrogen Chain, pp. 287309. Proceedings of Symposium, IAEA, Vienna.Google Scholar
Black, A. L. (1970). In Physiology of Digestion and Metabolism in the Ruminant, pp. 452455 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Black, A. L., Kleiber, M. & Baxter, C. F. (1955). Biochimica et Biophysica Acta 17, 346353.CrossRefGoogle Scholar
Black, A. L., Thompson, J. R., Anand, R. S. & Chapman, T. E. (1970). In Energy Metabolism of Farm Animals, pp. 7376 [Schurch, A. and Wenk, C. editors]. Zurich: Juris Verlag.Google Scholar
Brockman, R. P. & Greer, C. (1980). Australian Journal of Biological Science 33, 457464.CrossRefGoogle Scholar
Chaiyabutr, N., Faulkner, A. & Peaker, M. (1980). Biochemical Journal 186, 301308.CrossRefGoogle Scholar
Chaiyabutr, N., Faulkner, A. & Peaker, M. (1982). British Journal of Nutrition 47, 8794.CrossRefGoogle Scholar
Corbett, J. L., Farrell, D. J., Leng, R. A., McClymont, G. L. & Young, B. A. (1971). British Journal of Nutrition 26, 277291.CrossRefGoogle Scholar
Egan, A. R. & MacRae, J. C. (1979). Annales de Recherches Vétérinaires 10, 376378.Google Scholar
Egan, A. R., MacRae, J. C. & Lamb, C. S. (1983). British Journal of Nutrition 49, 373383.CrossRefGoogle Scholar
Egan, A. R., Moller, F. & Black, A. L. (1970). Journal of Nutrition 100, 419428.CrossRefGoogle Scholar
Gill, M. & Beever, D. E. (1982). British Journal of Nutrition 48, 3747.CrossRefGoogle Scholar
Gutteridge, J. M. C. & Wright, E. B. (1968). Journal of Medical and Laboratory Technology 25, 385386.Google Scholar
Haggarty, P., Reeds, P. J. & Wahle, K. W. J. (1983). In Energy Metabolism of Farm Animals, pp. 156159 [Ekern, A. and Sundstøl, F., editors]. Ski, Norway: Informasjonsteknikk A/S.Google Scholar
Heitmann, R. N., Hoover, W. H. & Sniffen, C. J. (1973). Journal of Nutrition 103, 15871593.CrossRefGoogle Scholar
Hill Farming Research Organisation (1979). Science and Hill Farming: HFRO Silver Jubilee Report 1954–1979, p. 41. Haddington, Scotland: D. & J. Croal.Google Scholar
Hodgson, J. C., Mellor, D. J. & Field, A. C. (1980). Biochemical Journal 186, 739747.CrossRefGoogle Scholar
Jones, G. B. (1965). Analytical Biochemistry 12, 249258.CrossRefGoogle Scholar
Judson, G. J. & Leng, R. A. (1968). Proceedings of the Australian Society of Animal Production 7, 354358.Google Scholar
Judson, G. J. & Leng, R. A. (1972). Australian Journal of Biological Science 25, 13131332.CrossRefGoogle Scholar
Leng, R. A. (1970). Advances in Veterinary Science and Comparative Medicine 14, 209260.Google Scholar
Leng, R. A. & Leonard, G. J. (1965). British Journal of Nutrition 19, 469484.CrossRefGoogle Scholar
Leng, R. A., Steel, J. W. & Luick, J. R. (1967). Biochemical Journal 103, 785790.CrossRefGoogle Scholar
Lindsay, D. B. (1970). In Physiology of Digestion and Metabolism in the Ruminant, pp. 438451 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Lindsay, D. B. (1978). Biochemical Society Transactions 6, 11521156.CrossRefGoogle Scholar
Lindsay, D. B. (1979). Proceedings of the Nutrition Society 38, 295302.CrossRefGoogle Scholar
Lindsay, D. B. (1982). Federation Proceedings 41, 25502554.Google Scholar
MacRae, J. C. & Egan, A. R. (1980). In Energy Metabolism, pp. 421426 [Mount, L. E., editor]. London and Boston: Butterworths.CrossRefGoogle Scholar
MacRae, J. C. & Egan, A. R. (1983). British Journal of Nutrition 49, 385393.CrossRefGoogle Scholar
MacRae, J. C. & Wilson, S. (1978). International Journal of Applied Radiation and Isotopes 29, 191195.CrossRefGoogle Scholar
Mayes, R. W., Milne, J. A., Lamb, C. S. & Spence, A. M. (1981). Proceedings of the Nutrition Society 40, 9A.Google Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). British Journal of Nutrition 35, 127147.CrossRefGoogle Scholar
Paxson, C. L. Jr, Morris, F. H. Jr. & Adcock, E. W. III (1978). Pediatric Research 12, 864867.CrossRefGoogle Scholar
Prieto, C., MacRae, J. C., Brockway, J. M. & Lobley, G. E. (1983). In Energy Metabolism of Farm Animals, pp. 7073 [Ekern, A. and Sundstøl, F., editors]. Ski, Norway: Informasjonsteknikk A/S.Google Scholar
Shipley, R. A., Gibbons, A. P. & Chudzik, E. B. (1974). Canadian Journal of Physiology and Pharmacology 52, 797807.CrossRefGoogle Scholar
Steel, J. W. & Leng, R. A. (1968). Proceedings of the Australian Society of Animal Production 7, 342347.Google Scholar
Steel, J. W. & Leng, R. A. (1973). British Journal of Nutrition 30, 451473.CrossRefGoogle Scholar
Thompson, J. R. (1971). Gluconeogenesis from propionate in the lactating cow. PhD Thesis, University of California, Davis, USA.Google Scholar
Vernon, R. G. (1980). Progress in Lipid Research 19, 23106.CrossRefGoogle Scholar
Weekes, T. E. C. (1972). Journal of Agricultural Science, Cambridge 79, 409421.CrossRefGoogle Scholar
Weekes, T. E. C. & Webster, A. J. F. (1975). British Journal of Nutrition 33, 425438.CrossRefGoogle Scholar
Wilson, S. (1982). Glucose metabolism in hill sheep. PhD Thesis, University of Nottingham.Google Scholar
Wilson, S., MacRae, J. C. (1977). Journal of Agricultural Science, Cambridge 88, 245246.CrossRefGoogle Scholar
Wilson, S., MacRae, J. C. & Buttery, P. J. (1979). Research in Veterinary Science 26, 256258.CrossRefGoogle Scholar
Wilson, S., MacRae, J. C. & Buttery, P. J. (1981). Research in Veterinary Science 30, 205212.CrossRefGoogle Scholar
Wilson, S., MacRae, J. C. & Buttery, P. J. (1983). In Energy Metabolism of Farm Animals, pp. 3841 [Ekern, A. and Sundstøl, F., editors]. Ski, Norway: Informasjonsteknikk A/S.Google Scholar
Wolff, J. E. & Bergman, E. N. (1972). American Journal of Physiology 223, 455460.CrossRefGoogle Scholar
Young, J. W. (1977). Journal of Dairy Science 60, 115.CrossRefGoogle Scholar
Ziolecki, A. & Kwiatkowska, E. (1973). Journal of Chromatography 80, 250254.CrossRefGoogle Scholar