I deficiency has been described as the single greatest cause of preventable mental impairment(
Reference Zimmermann, Jooste and Pandav
1
). I is an essential nutrient necessary for the production of thyroid hormones, which control metabolic processes and growth and development, especially of the brain and central nervous system(
2
). I deficiency is a global problem affecting both developed and developing countries; however, in the recent years there has been excellent progress in improving global I status. The most recent Iodine Global Network (IGN) scorecard (2015) designates twenty-six countries, including Ireland, as I insufficient compared with 116 countries in 1993(
3
,
4
).
In a recent issue of the British Journal of Nutrition, McNulty et al.
(
Reference McNulty, Nugent and Walton
5
) presents the I intake and status of the Irish population using data from the Irish National Adult Survey (2008–2010)(
6
) and the Irish Total Diet Study (2012–2014)(
7
). The median urinary iodine concentration (UIC) for the Irish adult population was 107 µg/l, which is within the range of 100–199 µg/l recommended by the World Health Organization for dietary adequacy for adults and children(
8
,
Reference Thomson
9
). Thus, at a glance, it might appear that the population now has an adequate status, which seemingly indicates there is no cause for concern.
However, the assessment of I status is far from straight forward. There is currently no definitive method to assess the I status of an individual. Furthermore, thyroid hormones are not good measures of I status as populations with suboptimal status can have concentrations within normal reference ranges(
Reference Zimmermann
10
). The WHO recommends assessing the I status of a population using a spot sample of urine. The median UIC of a population is then compared with recommended cut-offs. The IGN defines the I status of a country based on the UIC of school-aged children (≥6 years of age) and the Irish data date from 1999(
4
). School-age children would need to be surveyed for the IGN to review the I status of Ireland. In other developed countries such as Australia and New Zealand UIC is higher in school-aged children than adults(
11
). Although children’s dietary intake of I is lower their urine is much more concentrated than adults, although both have the same cut-offs to indicate deficiency (median UIC<100 µg/l). It has been argued that the median UIC cut-off for deficiency in adults should be lower at 60–70 µg/l(
Reference Zimmermann and Andersson
12
), which would put the Irish adult population well into the sufficient category. It is probable that the population assessment based on school-aged children would indicate sufficiency.
Recent research has found that when I status is sufficient in school-age children, there could still be deficiency in pregnant and breast-feeding women in the same population(
Reference Pearce, Andersson and Zimmermann
13
,
Reference Brough, Thomson and Skeaff
14
). McNulty et al.
(
Reference McNulty, Nugent and Walton
5
) found that 66 % of women achieved the Institute of Medicine’s estimated average requirement (EAR; 95 µg/d) for I, although intakes were lowest in women aged 18–35 years.(
Reference Pearce, Lazarus and Moreno-Reyes
15
). I requirements increase significantly during pregnancy to meet both maternal and fetal needs and increased maternal renal loss(
Reference Zimmermann
16
); I is also secreted into breastmilk thus maternal requirements are high during lactation(
Reference Azizi, Smyth and Azizi
17
). Using current intakes, 77 % of Irish women of childbearing age (18–50 years) would have intakes below the EAR for pregnancy (160 µg/d)(
18
). Thus, even with increased food intake during pregnancy, many of these women would be unlikely to achieve an adequate intake of I if they became pregnant. It is well established that severe I deficiency during pregnancy can result in cretinism in the infant, characterized by serious mental and physical impairment; this is not likely to occur in Ireland at the observed intakes. However, even mild to moderate deficiency in early life may affect neurobehavioural development. Thus, it is essential that I status is monitored not only in school-age children but also in both pregnant and breast-feeding women. In other countries where intakes are sufficient for children but suboptimal for pregnant and breast-feeding women supplementation is recommended for these women(
19
). It has also been suggested that the IGN global score card should reflects both school-age children and pregnant women(
Reference Brough, Thomson and Skeaff
14
).
McNulty et al.
(
Reference McNulty, Nugent and Walton
5
) demonstrated that milk was the main dietary source of I and I status was higher in the winter than the summer (median UIC 152 v. 108 µg/l, respectively). Levels of I in Irish milk are currently bolstered by farming practices, which involve the use of I-containing compounds in dairy sanitation; winter intakes are further increased by salt licks and fodder for dairy cows enriched with I. Any change to these practices could markedly influence the I intake of the Irish population. Moreover, European Food Safety Authority (EFSA) has recommended reducing the levels of I permitted in complete animal feed from 5 to 2 mg/kg, which could reduce human I intake in Ireland(
20
). It is essential that Ireland continue to monitor the I content of milk in order to prevent I deficiency, but also I excess. Further research should also consider individuals who exclude milk from the diet.
In conclusion, the recent work by McNulty et al.
(
Reference McNulty, Nugent and Walton
5
) suggests that for the majority of Irish adults I status is currently sufficient, although intakes in women of childbearing age are the lowest and of concern. It is essential that I status is now assessed in children and also pregnant and breast-feeding women; supplementation may be required during pregnancy and lactation. As milk is the major source of I in Ireland it is vital that both the I content of the diet and also I status of the population continues to be monitored, as changing farming practices could dramatically influence status. This Irish study is a comprehensive example of the complexities of assessing I status. There has been much progress in improving global I status among school-aged children in the recent years; however, sufficient I status is not something that can be taken for granted. Population I status is vulnerable to farming practices, changes in the food supply and also individual dietary choices. We must continue to evaluate both I status in the population and also dietary sources of I. Sufficiency in one group does not equate to sufficiency in all groups and the use of school-age children alone to determine the status of the whole population needs to be reconsidered.
I deficiency has been described as the single greatest cause of preventable mental impairment( Reference Zimmermann, Jooste and Pandav 1 ). I is an essential nutrient necessary for the production of thyroid hormones, which control metabolic processes and growth and development, especially of the brain and central nervous system( 2 ). I deficiency is a global problem affecting both developed and developing countries; however, in the recent years there has been excellent progress in improving global I status. The most recent Iodine Global Network (IGN) scorecard (2015) designates twenty-six countries, including Ireland, as I insufficient compared with 116 countries in 1993( 3 , 4 ).
In a recent issue of the British Journal of Nutrition, McNulty et al. ( Reference McNulty, Nugent and Walton 5 ) presents the I intake and status of the Irish population using data from the Irish National Adult Survey (2008–2010)( 6 ) and the Irish Total Diet Study (2012–2014)( 7 ). The median urinary iodine concentration (UIC) for the Irish adult population was 107 µg/l, which is within the range of 100–199 µg/l recommended by the World Health Organization for dietary adequacy for adults and children( 8 , Reference Thomson 9 ). Thus, at a glance, it might appear that the population now has an adequate status, which seemingly indicates there is no cause for concern.
However, the assessment of I status is far from straight forward. There is currently no definitive method to assess the I status of an individual. Furthermore, thyroid hormones are not good measures of I status as populations with suboptimal status can have concentrations within normal reference ranges( Reference Zimmermann 10 ). The WHO recommends assessing the I status of a population using a spot sample of urine. The median UIC of a population is then compared with recommended cut-offs. The IGN defines the I status of a country based on the UIC of school-aged children (≥6 years of age) and the Irish data date from 1999( 4 ). School-age children would need to be surveyed for the IGN to review the I status of Ireland. In other developed countries such as Australia and New Zealand UIC is higher in school-aged children than adults( 11 ). Although children’s dietary intake of I is lower their urine is much more concentrated than adults, although both have the same cut-offs to indicate deficiency (median UIC<100 µg/l). It has been argued that the median UIC cut-off for deficiency in adults should be lower at 60–70 µg/l( Reference Zimmermann and Andersson 12 ), which would put the Irish adult population well into the sufficient category. It is probable that the population assessment based on school-aged children would indicate sufficiency.
Recent research has found that when I status is sufficient in school-age children, there could still be deficiency in pregnant and breast-feeding women in the same population( Reference Pearce, Andersson and Zimmermann 13 , Reference Brough, Thomson and Skeaff 14 ). McNulty et al. ( Reference McNulty, Nugent and Walton 5 ) found that 66 % of women achieved the Institute of Medicine’s estimated average requirement (EAR; 95 µg/d) for I, although intakes were lowest in women aged 18–35 years.( Reference Pearce, Lazarus and Moreno-Reyes 15 ). I requirements increase significantly during pregnancy to meet both maternal and fetal needs and increased maternal renal loss( Reference Zimmermann 16 ); I is also secreted into breastmilk thus maternal requirements are high during lactation( Reference Azizi, Smyth and Azizi 17 ). Using current intakes, 77 % of Irish women of childbearing age (18–50 years) would have intakes below the EAR for pregnancy (160 µg/d)( 18 ). Thus, even with increased food intake during pregnancy, many of these women would be unlikely to achieve an adequate intake of I if they became pregnant. It is well established that severe I deficiency during pregnancy can result in cretinism in the infant, characterized by serious mental and physical impairment; this is not likely to occur in Ireland at the observed intakes. However, even mild to moderate deficiency in early life may affect neurobehavioural development. Thus, it is essential that I status is monitored not only in school-age children but also in both pregnant and breast-feeding women. In other countries where intakes are sufficient for children but suboptimal for pregnant and breast-feeding women supplementation is recommended for these women( 19 ). It has also been suggested that the IGN global score card should reflects both school-age children and pregnant women( Reference Brough, Thomson and Skeaff 14 ).
McNulty et al. ( Reference McNulty, Nugent and Walton 5 ) demonstrated that milk was the main dietary source of I and I status was higher in the winter than the summer (median UIC 152 v. 108 µg/l, respectively). Levels of I in Irish milk are currently bolstered by farming practices, which involve the use of I-containing compounds in dairy sanitation; winter intakes are further increased by salt licks and fodder for dairy cows enriched with I. Any change to these practices could markedly influence the I intake of the Irish population. Moreover, European Food Safety Authority (EFSA) has recommended reducing the levels of I permitted in complete animal feed from 5 to 2 mg/kg, which could reduce human I intake in Ireland( 20 ). It is essential that Ireland continue to monitor the I content of milk in order to prevent I deficiency, but also I excess. Further research should also consider individuals who exclude milk from the diet.
In conclusion, the recent work by McNulty et al. ( Reference McNulty, Nugent and Walton 5 ) suggests that for the majority of Irish adults I status is currently sufficient, although intakes in women of childbearing age are the lowest and of concern. It is essential that I status is now assessed in children and also pregnant and breast-feeding women; supplementation may be required during pregnancy and lactation. As milk is the major source of I in Ireland it is vital that both the I content of the diet and also I status of the population continues to be monitored, as changing farming practices could dramatically influence status. This Irish study is a comprehensive example of the complexities of assessing I status. There has been much progress in improving global I status among school-aged children in the recent years; however, sufficient I status is not something that can be taken for granted. Population I status is vulnerable to farming practices, changes in the food supply and also individual dietary choices. We must continue to evaluate both I status in the population and also dietary sources of I. Sufficiency in one group does not equate to sufficiency in all groups and the use of school-age children alone to determine the status of the whole population needs to be reconsidered.