Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T21:55:42.509Z Has data issue: false hasContentIssue false

Fatty acid composition of an oral load affects chylomicron size in human subjects

Published online by Cambridge University Press:  07 September 2009

Sana W. Sakr
Affiliation:
Groupe Lipoprotéines, Faculté de Médecine X. Bichat, BP416, 75870 Paris Cedex 18, France
N. Attia
Affiliation:
Groupe Lipoprotéines, Faculté de Médecine X. Bichat, BP416, 75870 Paris Cedex 18, France
M. Haourigui
Affiliation:
INSERM U224, Faculté de Médecine X. Bichat, BP416, 75870 Paris Cedex 18, France
J. L. Paul
Affiliation:
Laboratoire de Biochimie, Faculté des Sciences Pharmacologiques, 92296 Châtenay-Malabry, France
T. Soni
Affiliation:
Laboratoire de Biochimie, Hôpital Broussais, 75014 Paris, France
D. Vacher
Affiliation:
Groupe Lipoprotéines, Faculté de Médecine X. Bichat, BP416, 75870 Paris Cedex 18, France
A. Girard-Globa
Affiliation:
Groupe Lipoprotéines, Faculté de Médecine X. Bichat, BP416, 75870 Paris Cedex 18, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

HDL-phospholipids are determinants in reverse cholesterol transport. They are mostly derived from triacylglycerol (TG)-rich lipoproteins. Chylomicron size is important, therefore, because it is related to the ratio surface phospholipids: core TG and, thus, determines the availability of postprandial phospholipids for transfer to HDL. Eleven healthy young women each ingested four different fat loads supplemented with retinyl palmitate and containing 60 g sunflower oil (SO), oleic–sunflower oil (OSO), mixed oil (MO; (g/kg) linoleic acid 480, oleic acid 380, linolenic acid 13) or beef tallow (BT). At the peak of TG absorption for all loads (4 h) chylomicron diameters, determined by agarose-gel filtration, were larger after SO compared with OSO (P < 0·05) and BT (P = 0·06) and after MO compared with BT (P < 0·05). At 6 h chylomicron size was larger after the vegetable oils compared with BT (P < 0·05 in each case). After each fat load chylomicron size decreased at 6 and 8 h compared with that at 4 h (P < 0·05) except for OSO. Retinyl ester and TG concentrations were lower in chylomicrons after BT than after the other fats but not in the chylomicron-free serum (containing chylomicron remnants), suggesting absorption in the form of very small particles. Compared with the fasting value, the concentration of the Svedberg unit of flotation 20–400 fraction, which contains VLDL and chylomicron remnants, was lower 8 h after MO, the only fat to contain significant amounts of linolenic acid. We conclude that chylomicron size is dependent on the fatty acid composition of ingested fats and the time-course of digestion, being larger for polyunsaturated fatty acid-rich fats and in the early phase of digestion. On the basis of retinyl ester concentration there were no differences between fats in chylomicron-remnant clearance.

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Arntzenius, A. C., Kromhout, D., Barth, J. D., Reiber, J. H. C., Bruschke, A. V. J., Buis, B., van Gent, C. M., Kempen-Voogd, N., Strikwerda, S. & van der Velde, E. A. (1985). Diet, lipoproteins, and the progression of coronary atherosclerosis. The Leiden intervention trial. New England Journal of Medicine 312, 805811.CrossRefGoogle ScholarPubMed
Bennett-Clark, S., Atkiuson, D., Hamilton, J. A., Forte, T., Russell, B., Feldman, E. B. & Small, D. M. (1982). Physical studies of d < 1·006 g/ml lymph lipoproteins from rats fed palmitate-rich diets. Journal of Lipid Research 23, 2841.CrossRefGoogle Scholar
Bennett-Clark, S. & Norum, K. R. (1978). Intestinal lymph chylomicron cholesteryl ester during duodenal triolein infusion at increasing rate. Scandinavian Journal of Gastroenterology 13, 983990.CrossRefGoogle Scholar
Bergstedt, E. E., Hayashi, H., Kritchevsky, D. & Tso, P. (1990). A comparison of absorption of glycerol tristearate and glycerol trioleate by rat small intestine. American Journal of Physiology 259, G386G393.Google ScholarPubMed
Boquillon, M., Paris, R. & Clement, J. (1977). The effect of various dietary factors on the size distribution of lymph fat particles in rat. Lipids 12, 500504.CrossRefGoogle ScholarPubMed
Bracco, U. (1994). Effect of triglyceride structure on fat absorption. American Journal of Clinical Nutrition 60, Suppl., 1002S1009S.CrossRefGoogle ScholarPubMed
Carey, M. C., Small, D. M. & Bliss, C. M. (1983). Lipid digestion and absorption. Annual Review of Physiology 45, 651677.CrossRefGoogle ScholarPubMed
Castelli, W. P., Garrison, R. J., Wilson, P. W. F., Abbott, R. D., Kalousdian, S. & Kannel, W. B. (1986). Incidence of coronary heart disease and lipoprotein levels: The Framingham Study. Journal of the American Medical Association 256, 28352838.CrossRefGoogle ScholarPubMed
Coiffier, E., Paris, R. & Lecerf, J. (1987). Effects of dietary saturated and polyunsaturated fats on lipoprotein lipase and hepatic triglyceride lipase activity. Comparative Biochemistry and Physiology 88B, 187192.Google Scholar
Davidson, W. S., Gillotte, K. L., Lund-Katz, L., Johnson, W. I., Rothblat, G. H. & Phillips, M. C. (1995). The effect of high density lipoprotein phospholipid acyl chain composition on the efflux of cellular free cholesterol. Journal of Biological Chemistry 270, 58825890.CrossRefGoogle ScholarPubMed
De Bruin, T. W. A., Brouwer, C. B., van Linde-Sibenius, T. M., Jansen, H. & Erkelens, D. W. (1993). Different postprandial metabolism of olive oil and soybean oil: a possible mechanism of the high density lipoprotein conserving effect of olive oil. American Journal of Clinical Nutrition 58, 477483.CrossRefGoogle ScholarPubMed
Demacker, P. N. M., Reijnen, I. G. M., Katan, M. B., Stuyt, P. M. J. & Stalenhoef, A. M. F. (1991). Increased removal of remnants of triglyceride-rich lipoproteins on a diet rich in polyunsaturated fatty acids. European Journal of Clinical Investigation 21, 197203.CrossRefGoogle Scholar
De Ruyter, M. G. M. & De Leenheer, A. P. (1978). Simultaneous determination of retinol and retinyl esters in serum or plasma by reversed-phase high-performance liquid chromatography. Clinical Chemistry 24, 19201923.CrossRefGoogle ScholarPubMed
Eisenberg, S. (1984). High density lipoprotein metabolism. Journal of Lipid Research 25, 10171058.CrossRefGoogle ScholarPubMed
Feldman, E. B., Russel, B. S., Hawkins, C. B. & Forte, T. (1983). Intestinal lymph lipoproteins in rats fed diets enriched in specific fatty acids. Journal of Nutrition 113, 23232334.CrossRefGoogle ScholarPubMed
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Fraser, R. (1970). Size and lipid composition of chylomicrons of different Svedberg units of flotation. Journal of Lipid Research 11, 6065.CrossRefGoogle ScholarPubMed
Fraser, R., Cliff, W. J. & Courtice, F. C. (1968). The effect of dietary fat load on the size and composition of chylomicrons in thoracic duct lymph. Quarterly Journal of Experimental Physiology 53, 390398.CrossRefGoogle ScholarPubMed
Green, P. H. R. & Glickman, R. M. (1981). Intestinal lipoprotein metabolism. Journal of Lipid Research 22, 11531173.CrossRefGoogle ScholarPubMed
Groot, P. H. E., De Boer, B. C. J., Haddman, E., Houtsmuller, U. M. T. & Hülsmann, W. C. (1988). Effect of dietary fat composition on the metabolism of triacylglycerol-rich plasma lipoproteins in the postprandial phase in meal-fed rats. Journal of Lipid Research 29, 541551.CrossRefGoogle Scholar
Grundy, S. M. & Denke, M. A. (1990). Dietary influences on serum lipids and lipoproteins. Journal of Lipid Research 31, 11491172.CrossRefGoogle ScholarPubMed
Harris, W. S. (1989). Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. Journal of Lipid Research 30, 785807.CrossRefGoogle ScholarPubMed
Harris, W. S., Connor, W. E., Alam, N. & Illingworth, D. R. (1988). Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. Journal of Lipid Research 29, 14511460.CrossRefGoogle ScholarPubMed
Hayashi, H., Fujimoto, K., Cardelli, J. A., Nutting, D. F., Bergstedt, S. & Tso, P. (1990). Fat feeding increases size, but not number, of chylomicrons produced by small intestine. American Journal of Physiology 259, G709G719.Google Scholar
Johnson, W. J., Bamberger, M. J., Latta, R. A., Rapp, P. E., Phillips, M. C. & Rothblat, G. H. (1986). The bidirectional flux of cholesterol between cells and lipoproteins: effects of phospholipid depletion of high density lipoprotein. Journal of Biological Chemistry 261, 57665776.CrossRefGoogle ScholarPubMed
Jones, P. J. H., Pencharz, P. B. & Clandinin, M. T. (1985). Absorption of 13C-labeled stearic, oleic, and linoleic acids in humans: application to breath tests. Journal of Laboratory and Clinical Medicine 105, 647652.Google ScholarPubMed
Kalogeris, T. J. & Story, J. A. (1992a). Lymph chylomicron size is modified by fat saturation in rats. Journal of Nutrition 122, 16341642.CrossRefGoogle Scholar
Kalogeris, T. J. & Story, J. A. (1992b). Lymph chylomicron composition and size are modified by level of intestinally infused cholesterol and triglyceride source in rats. Journal of Nutrition 122, 10451055.CrossRefGoogle Scholar
Karpe, F., Steiner, G., Uffelman, K., Olivecrona, T. & Hamsten, A. (1994). Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 106, 8397.CrossRefGoogle ScholarPubMed
Keys, A., Menotti, A., Karvonen, M. J., Aravanis, C., Blackburn, H., Buzina, R., Djordjevic, B. S., Dontas, A. S., Fidanza, F., Keys, M. H., Kromhout, D., Nedeljkovic, S., Punsar, S., Seccareccia, F. & Toshima, H. (1986). The diet and 15 year death rate in the seven countries study. American Journal of Epidemiology 124, 903915.CrossRefGoogle ScholarPubMed
Levy, E., Roy, C. C., Goldstein, R., Bar-On, H. & Ziv, E. (1991). Metabolic fate of chylomicrons obtained from rats maintained on diets varying in fatty acid composition. Journal of the American College of Nutrition 10, 6978.CrossRefGoogle ScholarPubMed
Lichtenstein, A. H., Ausman, L. M., Carrasco, W., Jenner, J. L., Ordovas, J. M. & Schaefer, E. J. (1994). Hypercholesterolemic effect of dietary cholesterol in diets enriched in polyunsaturated and saturated fat. Dietary cholesterol, fat saturation, and plasma lipids. Arteriosclerosis and Thrombosis 14, 168175.CrossRefGoogle ScholarPubMed
Lütjohann, D., Björkhelm, I., Beil, U. F. & Von Bergmann, K. (1995). Sterol absorption and sterol balance in phythsterolemia evaluated by deuterium-labeled sterols: effect of sitostanol treatment. Journal of Lipid Research 36, 17631773.CrossRefGoogle ScholarPubMed
Matthews, J. N. S., Altaian, D. G., Campbell, M. J. & Royston, P. (1991). Analysis of serial measurements in medical research. British Medical Journal 300, 230235.CrossRefGoogle Scholar
Mensink, R. P. & Katan, M. B. (1989). Effect of a diet enriched with monounsaturated or polyunsaturated fatty acids on levels of low-density and high-density lipoprotein cholesterol in healthy women and men. New England Journal of Medicine 321, 436441.CrossRefGoogle ScholarPubMed
Miller, V. T. (1994). Lipids, lipoproteins, women and cardiovascular disease. Atherosclerosis 108, Suppl., S73S82.CrossRefGoogle ScholarPubMed
Morrison, W. & Smith, L. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. Journal of Lipid Research 5, 600608.CrossRefGoogle ScholarPubMed
Muesing, R. A., Griffin, P. & Mitchell, P. (1995). Corn oil and beef tallow elicit different postprandial responses in triglycerides and cholesterol, but similar changes in constituents of high-density lipoprotein. Journal of the American College of Nutrition 14, 5360.CrossRefGoogle ScholarPubMed
Ockner, R. K. & Manning, J. A. (1976). Fatty acid binding protein. Role in esterification of absorbed long chain fatty acid in rat intestine. Journal of Clinical Investigation 58, 632641.CrossRefGoogle ScholarPubMed
Ockner, R. K., Pittman, J. P. & Yager, J. L. (1972). Differences in the intestinal absorption of saturated and unsaturated long chain fatty acids. Gastroenterology 62, 981992.CrossRefGoogle ScholarPubMed
Patsch, J. R., Miesenböck, G., Hopfervieser, T., Mühlberger, V., Knapp, E., Dunn, J. K., Gotto, A. M. Jr & Patsch, W. (1992). Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arteriosclerosis and Thrombosis 12, 13361345.CrossRefGoogle ScholarPubMed
Peterson, G. L. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry 83, 346356.CrossRefGoogle Scholar
Redgrave, T. G., Kodali, D. R. & Small, D. M. (1988). The effect of triacyl-sn-glycerol structure on the metabolism of chylomicrons triacylglycerol-rich emulsions in the rat. Journal of Biological Chemistry 263, 51185123.CrossRefGoogle Scholar
Renner, F., Samuelson, A., Rogers, M. & Glickman, R. M. (1986). Effect of saturated and unsaturated lipid on the composition of mesenteric triglyceride-rich lipoproteins in the rat. Journal of Lipid Research 27, 7281.CrossRefGoogle ScholarPubMed
Small, D. M. (1991). The effects of glyceride structure on absorption and metabolism. Annual Review of Nutrition 11, 413434.CrossRefGoogle ScholarPubMed
Swaney, J. B., Orishimo, M. W. & Girard, A. (1987). Enzymatically induced alterations in the structure of rat serum lipoproteins. Journal of Lipid Research 28, 982992.CrossRefGoogle ScholarPubMed
Van Greevenbroek, M. M. J., Voorhout, W. F., Willem Erkelens, D., Van Meer, G. & De Bruin, T. W. A. (1995). Palmitic acid and linoleic acid metabolism in Caco-2 cells: different triglyceride synthesis and lipoprotein secretion. Journal of Lipid Research 36, 1324.CrossRefGoogle ScholarPubMed
Van Heek, M. & Zilversmit, D. B. (1990). Postprandial lipemia and lipoprotein lipase in the rabbit are modified by olive and coconut oil. Arteriosclerosis 10, 421429.CrossRefGoogle ScholarPubMed
Weintraub, M. S., Zechner, R., Brown, A., Eisenberg, S. & Breslow, J. L. (1988). Dietary polyunsaturated fats of the n-6 and n-3 series reduce postprandial lipoprotein levels. Journal of Clinical Investigation 82, 18841893.CrossRefGoogle Scholar
Wilkinson, L. (1990). Systat, The System for Statistics. Version 5.03 Evanston, IL: Systat Inc.Google Scholar
Zampelas, A., Peel, A. S., Gould, B. J., Wright, J. & Williams, C. M. (1994). Polyunsaturated fatty acids of the n-6 and n-3 series: effects on postprandial lipid and apolipoprotein levels in healthy men. European Journal of Clinical Nutrition 48, 842848.Google ScholarPubMed
Zilversmit, D. B. (1979). Atherogenesis: a postprandial phenomenon. Circulation 60, 473485.CrossRefGoogle ScholarPubMed