Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T09:39:04.104Z Has data issue: false hasContentIssue false

The fate of amino acids in isolated perfused livers of developing sheep

Published online by Cambridge University Press:  09 March 2007

P. M. J. Savan
Affiliation:
Department of Physiology and Biochemistry, University of Reading, Whiteknights, ReadingRG6 2AJ
Majorie K. Jeacock
Affiliation:
Department of Physiology and Biochemistry, University of Reading, Whiteknights, ReadingRG6 2AJ
D. A. L. Shepherd
Affiliation:
Department of Physiology and Biochemistry, University of Reading, Whiteknights, ReadingRG6 2AJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In order to establish whether or not there is a change in the relative rates of anabolism and catabolism of amino acids in the livers of lambs as they mature, a study has been made in isolated perfused livers obtained from foetal, suckling and ruminating lambs. The livers were perfused in a recirculating system and a mixture of amino acids (casein hydrolysate) was infused as substrate in the presence and absence of glucagon.

2. The oxygen consumption of the livers per unit weight increased as the lambs matured but the uptake of α-amino nitrogen declined. A comparison of the rates of O2 consumption and substrate uptake indicated that in foetal lambs less than 20% of the amino acids could have been oxidized, whereas in ruminating lambs all the amino acids taken up could have been oxidized.

3. In livers obtained from foetal lambs, the rate of urea production per unit weight of liver was approximately double that observed in ruminating lambs. Comparison of the rate of urea production and α-NH2-N uptake indicated that more than 60% of the substrate uptake was used for non-catabolic processes in the foetal lambs, whereas in ruminating animals all the α-NH2-N taken up could be accounted for as urea.

4. Gluconeogenesis could not be detected in lambs at any age studied and glucagon had no effect on any of the parameters studied.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Bergman, E. N. (1973). Cornell Vet. 63, 341.Google Scholar
Brockman, R. P. & Bergman, E. N. (1975). Am. J. Physiol. 228, 1627.CrossRefGoogle Scholar
Edwards, E. M., Dhand, U. K., Jeacock, M. K. & Shepherd, D. A. L. (1975). Biochim. Biophys. Acta 399, 219.Google Scholar
Ford, E. J. H. & Reilly, P. E. B. (1969). Res. vet. Sci. 10, 409.CrossRefGoogle Scholar
Garrison, J. C. & Haynes, R. C. (1973). J. biol. Chem. 148, 5333.CrossRefGoogle Scholar
Gresham, E. L., James, E. J., Raye, J. R., Battaglia, F. C., Makowski, E. L. & Meschia, G. (1972). Pediatrics, Springfield 50, 372.CrossRefGoogle Scholar
Harvey, D. (1956). Tech. Bull. Commonw. Bur. Anim. Nurr. no. 9.Google Scholar
Heitmann, R. N., Hoover, W. H. & Sniffen, C. J. (1973). J. Nutr. 103, 1587.CrossRefGoogle Scholar
Huggett, A. St G. & Nixon, D. A. (1957). Lancet ii, 368.CrossRefGoogle Scholar
Katz, M. L. & Bergman, E. N. (1969). Am. J. Physiol. 216, 946.CrossRefGoogle Scholar
Krebs, H. A. & Henseleit, K. (1932). Hoppe-Seyler's Z. physiol Chem. 210, 33.CrossRefGoogle Scholar
Lindsay, D. B. (1976). In Profein Metabolism and Nutrition, p. 183 [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: Butterworths.Google Scholar
Linzell, J. L., Setchell, B. P. & Lindsay, D. B. (1971). Q. Jl. exp. Physiol. 56, 53.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Mallette, L. E., Exton, J. H. & Park, C. R. (1969). J. biol. Chem. 244, 5713.CrossRefGoogle Scholar
Moore, R. B. & Kauffman, N. J. (1970). Analyt. Biochem. 33, 263.CrossRefGoogle Scholar
Rosen, H. (1957). Archs Biochem Biophys. 67, 10.CrossRefGoogle Scholar
Rudolph, A. M. & Heymann, M. A. (1975). In The Mammalian Fetus, p. 5 [Hafez, E. S. E., editor]. Springfield, Ill.: C. C. Thomas.Google Scholar
Ryan, W. L. & Carver, M. J. (1966). Nature, Lond. 212, 292.CrossRefGoogle Scholar
Savan, P. M. J., Jeacock, M. K. & Shepherd, D. A. L. (1976). Proc. Nutr. Soc. 35 30A.Google Scholar
Shoemaker, W. C. & van Itallie, T. B. (1960). Endocrinology 66, 260.CrossRefGoogle Scholar
Walaas, O. & Walaas, E. (1950). J. biol. Chem. 187, 769.CrossRefGoogle Scholar
Wolff, J. E., Bergman, E. N. & Williams, H. H. (1972). Am. J. Physiol. 223, 438.CrossRefGoogle Scholar