Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T09:44:15.206Z Has data issue: false hasContentIssue false

Factors affecting the voluntary intake of food by sheep

Published online by Cambridge University Press:  09 March 2007

W. L. Grovum
Affiliation:
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, NI G 2 W2, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Sheep equipped with rumen and abomasal cannulas were given ad lib. access to ground and pelleted lucerne (Medicago sativa) hay except for periods of up to 6 h immediately before experimental sessions in which food intake was measured while various stomach compartments were either distended or subjected to tactile stimulation from a probe.

2. Inserting a probe, consisting of two collapsed balloons tied onto the end of a polyethylene tube, into the reticulum depressed intake by 24% after 30 min of feeding (P < 0.025). Compensatory feeding was observed during the 30 min period immediately following removal of the probes. There were no effects of having a probe in the abomasum.

3. Distension of the reticulum with 0–800 ml water in a balloon depressed intake by 0.2 g/ml after 30 min of feeding (P < 0.05). Removing the balloons from the animals allowed them to make up the deficit in intake completely within 30 min. Distending the rumen by 800 ml had no effect on intake (P < 0.05). Distending the abomasum with up to 1000 ml water in a balloon depressed intake by 0.11 g/ml after 30 min of feeding with compensatory feeding being significant (P < 0.05) but incomplete.

4. Combinations of reticular distension up to 800 ml and of abomasal distension up to 1200 ml did not have additive depressing effects on intake.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Ash, R. W. & Kay, R. N. B. (1957). J. Physiol., Lond. 139, 23P.Google Scholar
Baile, C. A. & Forbes, J. M. (1974). Physiol. Rev. 54, 160.CrossRefGoogle Scholar
Baile, C. A., Mayer, J. & McLaughlin, C. (1969). Am. J. Physiol. 217, 397.CrossRefGoogle Scholar
Balch, C. C. & Campling, R. C. (1962). Nutr. Abstr. Rev. 32, 669.Google Scholar
Blaxter, K. L., Wainman, F. W. & Wilson, R. S. (1961). Anim. Prod. 3, 51.Google Scholar
Boyne, A. W., Campbell, R. M., Davidson, J. & Cuthbertson, D. P. (1956). Br. J. Nutr. 10, 325.CrossRefGoogle Scholar
Brown, W. B., Jones, R. & Forbes, J. M. (1978). Proc. Nutr. Soc. 37, A99.Google Scholar
Campling, R. C. (1970). In Physiology of Digestion und Metabolism in the Ruminant, p. 228 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press Ltd.Google Scholar
Campling, R. C. & Balch, C. C. (1961). Br. J. Nutr. 15, 523.CrossRefGoogle Scholar
Campling, R. C., Freer, M. & Balch, C. C. (1961). Br. J. Nutr. 15, 531.CrossRefGoogle Scholar
Carnpling, R. C., Freer, M. & Balch, C. C. (1963). Br. J. Nutr. 17, 263.CrossRefGoogle Scholar
Carr, S. B. & Jacobson, D. R. (1967). J. Dairy Sci. 50, 1814.CrossRefGoogle Scholar
Conrad, H. R., Pratt, A. D. & Hibbs, J. W. (1964). J. Dairy Sci. 47, 54.CrossRefGoogle Scholar
Crampton, E. W., Donefer, E. & Lloyd, L. E. (1960). J. Anim. Sci. 19, 538.CrossRefGoogle Scholar
Davies, H. L. (1962). Proc. Aust. Soc. Anim. Prod. 4, 167.Google Scholar
Dinius, D. A. & Baumgardt, B. R. (1970). J. Dairy Sci. 53, 311.CrossRefGoogle Scholar
Egan, A. R. (1965 a). Aust. J. agric. Res. 16, 451.CrossRefGoogle Scholar
Egan, A. R. (1965 b). Aust. J. agric. Res. 16, 463.CrossRefGoogle Scholar
Egan, A. R. (1970). Aust. J. agric. Res. 21, 735.CrossRefGoogle Scholar
Egan, A. R. (1971). Aust. J. agric. Res. 23, 347.CrossRefGoogle Scholar
Forbes, J. M. (1977 a). Anim. Prod. 24, 203.Google Scholar
Forbes, J. M. (1977 b). Anim. Prod. 24, 91.Google Scholar
Gordon, J. G. (1964). Nature 204, 798.CrossRefGoogle Scholar
Grovum, W. L. (1978). Experientia 34, 202.CrossRefGoogle Scholar
Grovum, W. L. & Phillips, G. D. (1978). Br. J. Nutr. 40, 323.CrossRefGoogle Scholar
Harding, R. & Leek, B. F. (1972). J. Physiol., Lond. 223, 32P.Google Scholar
Hodgson, J. (1971). Anim. Prod. 13, 449.Google Scholar
Iggo, A. (1955). J. Physiol., Lond. 128, 593.CrossRefGoogle Scholar
Leek, B. F. (1969). J. Physiol., Lond. 202, 585.CrossRefGoogle Scholar
Leek, B. F. (1973). J. Physiol., Lond. 227, 22P.Google Scholar
McLeay, L. M. & Titchen, D. A. (1975). J. Physiol., Lond. 248, 595.CrossRefGoogle Scholar
Milne, J. A., MacRae, J. C., Spence, A. M. & Wilson, S. (1978). Br. J. Nutr. 40, 347.CrossRefGoogle Scholar
Montgomery, M. J. & Baumgardt, B. R. (1965). J. Dairy Sci. 48, 569.CrossRefGoogle Scholar
Ørskov, E. R. (1978). Proceedings, University of Guelph Nutrition Conference for Feed Manufacturers, 14th ed.Toronto: Departments of Nutrition and Animal and Poultry Science, University of Guelph.Google Scholar
Ørskov, E. R., Fraser, C. & McDonald, I. (1971). Br. J. Nutr. 25, 243.CrossRefGoogle Scholar
Pettyjohn, J. D., Everett, J. P. & Mochrie, R. D. (1963). J. Dairy Sci. 46, 710.CrossRefGoogle Scholar
Reid, C. S. W. & Cornwall, J. B. (1959). Proc. N.Z. Soc. Anim. Prod. 19, 23.Google Scholar
Schalk, A. F. & Amadon, R. S. (1928). Bull. N. Dak. agric. Exp. Stn no. 216.Google Scholar
Towbin, E. J. (1949). Am. J. Physiol. 159, 533.CrossRefGoogle Scholar
Ulyatt, M. J., Blaxter, K. L. & McDonald, I. (1967). Anim. Prod. 9, 463.Google Scholar
Van Niekerk, A. I., Greenhalgh, J. F. D. & Reid, G. W. (1973). Br. J. Nutr. 30, 95.CrossRefGoogle Scholar
Weston, R. H. (1966). Ausr. J. agric. Res. 17, 939.CrossRefGoogle Scholar