Article contents
Expansion of the humoral effector cell compartment of both systemic and mucosal immune systemsin a weanling murine model which duplicates critical features of human protein-energy malnutrition
Published online by Cambridge University Press: 09 March 2007
Abstract
A direct comparison of systemic (spleen) and mucosal (intestine) antibody-producing systems was made in weanling male C57BL/6J mice subjected to wasting protein-energy malnutrition (PEM) by means of a low-protein protocol known to duplicate immunological and physiological features of human malnutrition. ELISA revealed low concentrations of biliary and gut lumen immunoglobulin (Ig) A in malnourished mice concomitantly with a high concentration of blood IgA. The low-protein model, therefore, exhibited fidelity to human protein-energy malnutrition in its influence on the concentrations of the mucosal Ig, IgA, in critical biological fluids. The number of IgA-, IgM- and IgG-containing cells was estimated morphometrically on a per organ basis. The low-protein protocol supported expansion in numbers of mucosal IgA-containing cells (18 x relative to a zero-time control group) and of splenic IgG- containing cells (135 x ), albeit an attenuated expansion in comparison with that of well-nourished control animals (132x and 571x respectively relative to zero-time controls). Up to terminal differentiation of Ig-containing cells, systemic and mucosal antibody-producing systems exhibited similarly remarkable resistance to wasting malnutrition. Epithelial transport of IgA may be an aspect of the mucosal antibody response which is particularly sensitive to PEM.
- Type
- immune response in malnutrition
- Information
- Copyright
- Copyright © The Nutrition Society 1996
References
REFERENCES
- 13
- Cited by