Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T17:07:30.606Z Has data issue: false hasContentIssue false

The energy value of short-chain fatty acids infused into the caecum of pigs

Published online by Cambridge University Press:  09 March 2007

Henry Jørgensen
Affiliation:
Danish Institute of Animal Science, Department of Nutrition, Research Centre Foulum,PO Box 39, DK-8830Tjele, Denmark
Torben Larsen
Affiliation:
Danish Institute of Animal Science, Department of Nutrition, Research Centre Foulum,PO Box 39, DK-8830Tjele, Denmark
Xin-Quan Zhao
Affiliation:
Danish Institute of Animal Science, Department of Nutrition, Research Centre Foulum,PO Box 39, DK-8830Tjele, Denmark
BjØrn O. Eggum
Affiliation:
Danish Institute of Animal Science, Department of Nutrition, Research Centre Foulum,PO Box 39, DK-8830Tjele, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present work was undertaken to study the energy value of a mixture of acetic, propionic and butyric acids (0·682: 0·226: 0·092) infused intracaecally in growing pigs. A basal diet low in fibre (42 g NSP/kg DM) was given at below the requirement for maximum weight gain. In six 2-week periods, N and energy balance measurements in eight growing pigs were carried out with and without infusion of short-chain fatty acids (SCFA). Heat production was measured using open-circuit chambers and the concentration of SCFA in faeces was determined. Less than 1% of the infused SCFA was excreted in faeces illustrating the capacity of the hind-gut to absorb and metabolize SCFA. Infusion of SCFA did not affect the digestibility of nutrients and energy. However, N retention increased demonstrating that SCFA are an energy source for protein gain when pigs are fed at below the requirement of energy. Increased CH4 production together with an increased excretion of branched-chain fatty acids in faeces suggested that there was a higher microbial activity in the hind-gut during infusion. The partial utilization of the infused energyin SCFA was 0·821. A small proportion of the infused energy in SCFA was retained in protein (0·099) and a considerable amount was retained as fat (0·722).

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Argenzio, R. A. & Southworth, M. (1974). Sites of organic acid production and absorption in the gastrointestinal tract of the pig. American Journal of Physiology 228, 454460.Google Scholar
Association of Official Analytical Chemists (1975). Official Methods of Analysis, 11th ed. Washington, DC: Association of Official Analytical Chemists.Google Scholar
Knudsen, K. E. Bach, Jensen, B. B., Andersen, J.O & Hansen, I. (1991). Gastrointestinal implications in pigs of wheat and oat fractions. 2. Microbial activity in the gastrointestinal tract. British Journal of Nutrition 65, 233248.Google Scholar
Knudsen, K. E. Bach, Jensen, B. B. & Hansen, I. (1993). Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in β-D-glucan. British Journal of Nutrition 70, 537556.Google Scholar
Barcroft, J., McAnally, R. A. & Phillipson, A. T. (1944). Absorption of volatile acids from the alimentary tract of the sheep and other animals. Journal of Experimental Biology 20, 120132.Google Scholar
Beaulieu, K. E. & McBurney, M. I. (1992). Changes in pig serum lipids, nutrient digestibility and sterol excretion during cecal infusion of propionate. Journal of Nutrition 122, 241245.Google Scholar
Brouwer, E. (1965). Report of Sub-committee on Constants and Factors. In Energy Metabolism. EAAP Publication no. 11, pp. 441443 [Blaxter, K. L., editor]. London: Academic Press.Google Scholar
Demigné, C. & Rémésy, C. (1985). Stimulation of absorption of volatile fatty acids and minerals in cecum of rats adapted to very high fiber diet. Journal of Nutrition 115, 5360.Google Scholar
Engelhardt, W. v., Rönnau, K., Rechkemmer, G. & Sakata, T. (1989). Absorption of short-chain fatty acids and their role in the hindgut of monogastric animals. Animal Feed Science and Technology 23, 4353.Google Scholar
Fleming, S. E., Choi, S. Y. & Fitch, M. D. (1991). Absorption of short-chain fatty acids from the rat cecum in vivo. Journal of Nutrition 121, 17871797.Google Scholar
Fuller, M. F. & Crofts, R. M. J. (1977). The protein-sparing effect of carbohydrate. 1. Nitrogen retention of growing pigs in relation to diet. British Journal of Nutrition 38, 479488.Google Scholar
Gädegen, D., Breves, G. & Oslage, H. J. (1989). Efficiency of energy utilization of intracaecally infused volatile fatty acids in pigs. In Energy Metabolism of Farm Animals. EAAP Publication no. 43, pp. 115118 [van der Honing, Y. and Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Hoffmann, L., Jentsch, W. & Schiemann, R. (1990). Energieumsatzmessungen am adulten Schwein bei Verfütterung von Rationen mit Kartoffelstárke, Kartoffeln, Rüben, Pressschnitzeln und Großfuttermitteln als Zulagen zu einer Grundration. 1. Energieumsatz und Energieverwertung (Measurement of the energy metabolism of adult pigs after feeding of rations with potato starch, potatoes, beets, sugar beet pulp and roughage as supplements to a basic ration. 1. Energy metabolism and energy utilization). Archives of Animal Nutrition 40, 191207.Google Scholar
Høverstad, T. (1986). Studies of short-chain fatty acid absorption in man. Scandinavian Journal of Gastroenterology 21, 257260.Google Scholar
Imoto, S. & Namioka, S. (1983). Nutritive value of acetate in growing pigs. Journal of Animal Science 56, 858866.Google Scholar
Jensen, B. B & Jørgensen, H. (1994). Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Applied and Environmental Microbiology 60, 18971904.Google Scholar
Jensen, M. T., Cox, R. P. & Jensen, B. B. (1995). Microbial production of skatole in the hind gut of pigs fed different diets and its relation to skatole deposition in backfat. Animal Science 61, 293304.Google Scholar
Jentsch, W., Schiemann, R. & Hoffmann, L. (1968). Modellversuche mit Schweinen zur Bestimmung der energetischen Verwertung von Alkohol, Essig- und Milchsä;ure (Model experiments with pigs for determining the energy utilization of alcohol, acetic acid and lactic acid). Archiv für Tierernäihrung 18, 352357.Google Scholar
Jørgensen, H., Zhao, X. Q. & Eggum, B. O. (1996). The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. British Journal of Nutrition 75, 365378.Google Scholar
Just, A., Fernández, J. A. & Jørgensen, H. (1981). The digestive capacity of the caecum-colon and the value of the nitrogen absorbed from the hind gut for protein synthesis in pigs. British Journal of Nutrition 46, 209219.Google Scholar
Just, A., Fernández, J. A. & Jørgensen, H. (1983 a). The net energy value of diets for growth in pigs in relation to the fermentative processes in the digestive tract and the site of absorption of the nutrients. Livestock Production Science 10, 171186.Google Scholar
Just, A., Jørgensen, H. & Fernández, J. A. (1983 b). Maintenance requirement and the net energy value of different diets for growth in pigs. Livestock Production Science 10, 487506.Google Scholar
Just, A., Jørgensen, H. & Fenández, J. A. (1983 c). Forskellige foderstoffers kemiske sammenœtning, fordøjelighed, energi- og proteinvœrdi til svin (The Chemical Composition, Digestibility, Energy and Protein Value of Different Feedstuffs for Pigs). Report no. 556. Copenhagen: National Institute of Animal Science.Google Scholar
Kripke, S. A., Fox, A. D., Bergman, J. M., Settle, R. G. & Rombeau, J. L. (1989). Stimulation of intestinal mucosal growth with intracolonic infusion of short-chain fatty acids. Journal of Parenteral and Enteral Nutrition 13, 109116.Google Scholar
Latymer, E. A., Keal, H. D. & Low, A. G. (1991). Absorption and metabolism of [U-14C] acetic acid in growing pigs. Animal Production 52, 331336.Google Scholar
Livesey, G. (1992). The energy values of dietary fibre and sugar alcohols for man. Nutrition Research Reviews 5, 6184.CrossRefGoogle ScholarPubMed
Macfarlane, G. T., Cummings, J. H. & Allison, C. (1986). Protein degradation by human intestinal bacteria. Journal of General Microbiology 132, 16471656.Google Scholar
McNeil, N. I., Cummings, J. H. & James, W. P. T. (1978). Short chain fatty acid absorption by the human large intestine. Gut 19, 819822.Google Scholar
Miller, T. L. & Wolin, M. J. (1979). Fermentations by saccharolytic intestinal bacteria. American Journal of Clinical Nutrition 32, 164172.Google Scholar
Müller, H. L., Kirchgessner, M. & Roth, F. X. (1991). Energetische Efficienz eines intracaecal infundierten Essigsáure-Propionsáuregemisches bei Sauen (Energetic efficiency of a mixture of acetic and propionic acids in sows). Journal of Animal Physiology and Animal Nutrition 65, 140145.Google Scholar
Neergaard, L., Petersen, C. B. & Thorbek, G. (1969). Carbon determination in biological materials related to respiration trials. Zeitschrift für Tierphysiology, Tierernährung und Futtermittelkunde 25, 302308.Google Scholar
Rechkemmer, G., Rönnau, K. & Engelhardt, W. v. (1988). Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comparative Biochemistry and Physiology 90A, 563569.Google Scholar
Rérat, A., Fiszlewicz, M., Guisi, A. & Vaugelade, P. (1987). Influence of meal frequency on postprandial variations in the production and absorption of volatile fatty acids in the digestive tract of conscious pigs. Journal of Animal Science 64,448456.Google Scholar
Richardson, A. J., Calder, A. G., Stewart, C. S. & Smith, A. (1989). Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Letters in Applied Microbiology 9, 58.Google Scholar
Roediger, W. E. W. (1982). Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424429.Google Scholar
Roth, F. X., Kirchgessner, M. & Müller, H. L. (1988). Energetische Verwertung von intracaecal infundierter Essig- und Propionsäure bei Sauen (Energetic utilization of intracaecally infused acetic and propionic acids in sows). Journal of Animal Physiology and Animal Nutrition 59, 211217.Google Scholar
Schürch, A. F., Lloyd, L. E. & Crampton, E. W. (1950). The use of chromic oxide as an index for determining the digestibility of a diet. Journal of Nutrition 50, 628636.Google Scholar
Statistical Analysis Systems (1987). SAS/STAT Guide for Personal Computers, version 6 ed. Cary, NC: Statistical Analysis Systems Institute, Inc.Google Scholar
Stoldt, W. (1952). Vorslag zur Vereinheitlichung der Fettbestimmung in Lebensmitteln (Suggestions to standardize the determinations of fat in foodstuffs). Fette, Seifen, Anstrichmittel 54, 206207.CrossRefGoogle Scholar
Theander, O. & Åman, P. (1979). Studies on dietary fibre. 1. Analysis and chemical characterization of weter-soluble and water-insoluble dietary fibres. Swedish Journal of Agricultural Research 9, 97106.Google Scholar
Yen, J. T., Nienaber, J. A., Hill, D. A. & Pond, W. G. (1989). Oxygen consumption by portal vein-drained organs and by whole animal in conscious growing swine. Proceedings of the Society for Experimental Biology and Medicine 190, 393398.Google Scholar
Zhu, J. Q., Fowler, V. R. & Fuller, M. F. (1993). Assessment of fermentation in growing pigs given unmolassed sugar-beet pulp: a stoichiometric approach. British Journal of Nutrition 69, 511525.Google Scholar