Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T07:31:58.976Z Has data issue: false hasContentIssue false

The energy equivalents of ATP and the energy values of food proteins and fats

Published online by Cambridge University Press:  09 March 2007

Geoffrey Livesey
Affiliation:
Division of Nutrition and Food Quality, ARC Food Research Institute, Colney Lane, Norwich, NR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Heats of combustion and energy equivalents of cytoplasmic ATP have been estimated for glucose, 101 food proteins and 116 food fats based on amino acid and fatty acid composition data from food composition tables and the heats of combustion and energy equivalents of cytoplasmic ATP of each individual amino acid, fatty acid, glycerol and glucose. The isodynamic equivalents of carbohydrate, fat and protein at the biochemical level have been investigated.

2. Heats of combustion of food proteins and fats derived from compositional data were within 1 % of published values obtained by calorimetry.

3. Cytoplasmic ATP equivalents for glucose, fat and protein range from 9·0 to 14·7, 8·6 to 14·6 and 6·4 to 13·2 mol cytoplasmic ATP/MJ of metabolizable energy respectively, depending on the choice of mitochondrial proton stoichiometries for these estimations. The range is extended further when considering the level and type of mitochondrial ‘uncoupling’.

4. Isobioenergetic relationships between the efficiencies of glucose (G) and fat (F) (F = 1·05 G-0·9) and glucose and protein (P) (P = G(1·02–0·19f)-(1.8+0·5f)) energy conversions (wheref is the fraction of protein oxidized via gluconeogenesis) were obtained and were essentially independent of the choice of mitochondrial proton stoichiometry and the level and type of uncoupling of oxidative phosphorylation.

5. Potential errors in previous estimates of ATP yield from protein are shown to be as much as -17·6 to < 118%; accounting for the efficiency of mitochondrial oxidative phosphorylation narrows this to between -7·9 and 17·4% and accounting for the fraction of protein oxidized via gluconeogenesis limits this further to between - 7·9 and 11·1%. Remaining uncertainty is attributed mostly to lack of knowledge about the energy cost of substrate absorption from the gut and transport across cell membranes.

6. Coefficients of variation (cv) in the cytoplasmic ATP yield/g protein and /g protein nitrogen for the 101 food proteins were large (0·033 and 0·058 respectively). This is attributed mostly to variation in the metabolizable heats of combustion (cv 0·033 and 0·053 respectively) and to a much smaller extent in the efficiency with which cytoplasmic ATP equivalents are generated/MJ of metabolizable energy (cv 0·01).

7. It is concluded that the current understanding of biochemical energy transduction is sufficient to permit only a crude estimate of the energy equivalents of cytoplasmic ATP but that these equivalents vary by less than 5% between both different food proteins and different food fats. Isobioenergetic equivalents for carbohydrates, fats and protein which could be applied to modify the Atwater conversion factors are possible but require first an accurate quantification of the energy equivalent of cytoplasmic ATP for glucose in vivo, and an indication that oxidative phosphorylation is similarly efficient in different individuals.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Adriaanse, N., Dekker, H. & Coops, J. (1965). Recueil des Travaux Chimiques 84, 393407.CrossRefGoogle Scholar
Alexandre, A., Galliazzo, F. & Lehninger, A. L. (1980). Journal of Biological Chemistry 255, 1072110730.CrossRefGoogle Scholar
Alexandre, A. & Lehninger, A. L. (1979). Journal of Biological Chemistry 254, 1155511560.CrossRefGoogle Scholar
Alexandre, A., Reynafarje, B. & Lehninger, A. L. (1978). Proceedings of the National Academy of Sciences of the USA 75, 52965300.CrossRefGoogle Scholar
Al-Shawi, M. K. & Brand, M. D. (1981). Biochemical Journal 200, 539546.CrossRefGoogle Scholar
Ashworth, A. (1969). Nature 233, 407409.CrossRefGoogle Scholar
Atkinson, D. E. (1971). Advances in Enzyme Regulation 9, 207219.CrossRefGoogle Scholar
Azzone, G. F., PozzanT., Di T., Di, Virgillo, F. & Miconi, V. (1978). In Frontiers of Biological Energetics, pp. 375383 [Dutton, P. L., Leight, J. S. and Scarpa, A., editors]. New York: Academic Press.Google Scholar
Ball, E. G. (1973). Energy Metabolism. Boston: Addison Wesley.Google Scholar
Brand, M. D., Harper, W. G., Nicholls, D. G. & Ingledew, W. J. (1978). FEBS Letters 95, 125129.Google Scholar
Brand, M. D., Reynafarje, B. & Lehninger, A. L. (1976 a). Proceedings of the National Academy of Sciences of the USA 73, 437441.CrossRefGoogle Scholar
Brand, M. D., Reynafarje, B. & Lehninger, A. L. (1976 b). Journal of Biological Chemistry 251, 56705679.Google Scholar
Chance, B. (1970). Proceedings of the National Academy of Sciences of the USA 66, 11751182.Google Scholar
Croft, L. R. (1973). Handbook of Protein Sequences. Oxford: Joynson-Bruvvers.Google Scholar
Flatt, J. P. (1977). In Recent Advances in Obesity Research: II, pp. 211228 [Bray, G. A., editor]. London: Newman Publishing.Google Scholar
Flatt, J. P. (1980). Assessment of Energy Metabolism in Health and Disease, pp. 7787 [Kinney, J. M., editor]. Columbia, Ohio: Ross Laboratories.Google Scholar
Garrow, J. S. & Hawes, S. F. (1972). British Journal of Nutrition 27, 211219.Google Scholar
Gregg, V. A. & Milligan, L. P. (1982). British Journal of Nutrition 48, 6571.CrossRefGoogle Scholar
Hegsted, D. M. (1974). Nutrition Reviews 32, 3338.CrossRefGoogle Scholar
Hinkle, P. C. (1981). In Chemiosmotic Proton Circuits in Biological Membranes, pp. 4953 [Skulachev, V. P., Hinkle, and P. C., editors]. Boston: Addison Wesley.Google Scholar
Hinkle, P. C. & Yu, M. L. (1979). Journal of Biological Chemistry 254, 24502455.CrossRefGoogle Scholar
Hogman, C. P. (1962). Handbook of Chemistry and Physics, 44th ed. Oxford: The Chemical Rubber Co.Google Scholar
Hommes, F. A. (1980). Nutrition and Metabolism 24, 110113.Google Scholar
Hommes, F. A., Drost, Y. M., Geraets, W. X. M. &, Reijenga, M. A. A. (1975). Pediatric Research 9, 5155.Google Scholar
Janz, G. J. (1958). Estimation of Thermodynamic Properties of Organic Compounds. New York: Academic Press.Google Scholar
Krebs, H. A. (1964). In Mammalian Protein Metabolism, Vol. 1, pp. 125176 [Munro, H. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
McGilvery, R. W. (1979). Biochemistry: a Functional Approach, 2nd ed. London: W. B. Saunders.Google Scholar
Matthews, P. M., Bland, J. L., Gadian, D. G. & Radda, G. K. (1981). Biochemical and Biophysical Research Communications 103, 10521059.CrossRefGoogle Scholar
Merrill, A. L. & Watt, B. K. (1955). Energy Value of Foods. United States Department of Agriculture, Handbook 74.Google Scholar
Miller, D. S. & Payne, P. R. (1961). British Journal of Nutrition 15, 1119.Google Scholar
Millward, D. J., Garlick, P. J. & Reeds, P. J. (1976). Proceedings of the Nutrition Society 35, 339349.CrossRefGoogle Scholar
Mitchell, P. & Moyle, J. (1967 a). Biochemical Journal 104, 588600.CrossRefGoogle Scholar
Mitchell, P. & Moyle, J. (1967 b). Biochemical Journal 105, 11471162.CrossRefGoogle Scholar
Mitchell, P. & Moyle, J. (1968). European Journal of Biochemistry 4, 530539.CrossRefGoogle Scholar
Mitchell, P. & Moyle, J. (1969). European Journal of Biochemistry 7, 471484.CrossRefGoogle Scholar
Nicholls, D. G. (1976). FEBS Letters 61, 103110.CrossRefGoogle Scholar
Nicholls, D. G. (1982). Bioenergetics: an Introduction to the Chemiosmotic Theory. New York: Academic Press.Google Scholar
Nicholls, D. G. & Lock, R. (1981). In Chemiosmotic Proton Circuits in Biological Membranes, pp 567576 [Skulachev, V. P. and Hinkle, P. C., editors]. Boston: Addison Wesley.Google Scholar
Papa, S., Capuano, F., Markert, M. & Altamura, N. (1980 a). FEBS Letters 111, 243248.CrossRefGoogle Scholar
Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., Capuano, F., Capitano, N. & Altamura, N. (1980 b). Biochemical Journal 192, 203218.CrossRefGoogle Scholar
Paul, A. A. & Southgate, D. A. T. (1978). McCance & Widdowson's ‘The Composition of Foods’, 4th ed. London: H. M. Stationery Office.Google Scholar
Pittet, P. H., Gygax, P. H. & Jequier, E. (1974). British Journal of Nutrition 31, 343349.CrossRefGoogle Scholar
Ponomarev, V. V. (1962). Zhurnal Fizicheskoi Khimii 36, 14721476.Google Scholar
PozzanT., Di T., Di, Virgilo, F., Bragadin, M., Miconi, V. & Azzone, G. F. (1979 b). Proceedings of the National Academy of Sciences of the USA 76, 21232127.CrossRefGoogle Scholar
Pozzan, T., MiconiV., Di V., Di, Virgilo, F. & Azzone, G. F. (1979 a). Journal of Biological Chemistry 254,102010205.Google Scholar
Rawitscher, M., Wadso, I. & Sturtevant, J. M. (1961). Journal of the American Chemical Society 83, 31803184.Google Scholar
Reeds, P. J., Cadenhead, A., Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). British Journal of Nutrition 43, 445455.CrossRefGoogle Scholar
Reynafarje, B., Brand, M. D. & Lehninger, A. L. (1976). Journal of Biological Chemistry 251, 74427451.Google Scholar
Rubner, M. (1902). In The Law of Energy Consumption in Nutrition, pp. 757 [Joy, R. J. T., editor]. Washington DC: U.S. Army Research Institute.Google Scholar
Rydstrom, J., Lee, C. P. & Ernster, L. (1981). In Chemiosmotic Proton Circuits in Biological Membranes, pp. 483504 [Skulachev, V. P. and Hinkle, P. C., editors]. Boston: Addison Wesley.Google Scholar
Sallach, H. J. & Fahien, L. A. (1969). In Metabolic Pathways, 3rd ed., vol. III, pp. 194. [Greenberg, D., editor]. New York: Academic Press.Google Scholar
Schulz, A. R. (1975). Journal of Nutrition 105, 200207.CrossRefGoogle Scholar
Schulz, A. R. (1977). British Journal of Nutrition 39, 235254.CrossRefGoogle Scholar
Shoubridge, E. A., Briggs, R. W. & Radda, G. K. (1982). FEBS Letters 140, 288292.CrossRefGoogle Scholar
Skulachev, V. P. (1963). Proceedings of the 5th International Congress on Biochemistry, Moscow 5, 365375.Google Scholar
Sober, H. A. (1968). C.R.C. Handbook of Biochemistry and Selected Data for Molecular Biology. Oxford: The Chemical Rubber Co.Google Scholar
Stirling, J. L. & Stock, M. J. (1968). Nature 220, 801802.Google Scholar
Vercesi, A., Reynafarje, B. & Lehninger, A. L. (1978). Journal of Biological Chemistry 253, 63796385.Google Scholar
Walser, M. (1981). In Nitrogen Metabolism in Man, pp. 229246 [Waterlow, J. C. and Stephens, J. M. L., editors]. London: Applied Science Publishers.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: Elsevier North-Holland.Google Scholar
Webster, A. J. F., Lobley, G. E., Reeds, P. J. & Puller, J. D. (1978). Proceedings of the Nutrition Society 37, 21A.Google Scholar
Whittaker, P. A. & Danks, S. M. (1978). Mitochondria, Structure, Function and Assembly. London: Longman.Google Scholar
Wilkströom, M. K. F. & Krab, K. (1979). Biochimica et Biophysica Acta 549, 177222.Google Scholar