Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T21:56:27.271Z Has data issue: false hasContentIssue false

The efficiency of utilization of metabolizable energy and apparent absorption of amino acids in sheep given spring- and autumn-harvested dried grass

Published online by Cambridge University Press:  09 March 2007

J. C. Macrae
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
J. S. Smith
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
P. J. S. Dewey
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
A. C Brewer
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
D. S. Brown
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
A. Walker
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Three experiments were conducted with sheep given spring-harvested dried grass (SHG) and autumn-harvested dried grass (AHG). The first was a calorimetric trial to determine the metabolizable energy (ME) content of each grass and the efficiency with which sheep utilize their extra ME intakes above the maintenance level of intake. The second examined the relative amounts of extra non-ammonia-nitrogen (NAN) and individual amino acids absorbed from the small intestine per unit extra ME intake as the level of feeding was raised from energy equilibrium (M) to approximately 1.5 M. The third was a further calorimetric trial to investigate the effect of an abomasal infusion of 30 g casein/d on the efficiency of utilization of AHG.

2. The ME content of the SHG (11.8 MJ/kg dry matter (DM)) was higher than that of AHG (10.0 MJ/kg DM). The efficiency of utilization of ME for productive purposes (is. above the M level of intake; kf,) was higher when given SHG (kf 0.54 between M and 2 M) than when given AHG (kf 0.43 between M and 2 M).

3. As the level of intake of each grass was raised from M to 1.5 M there was a greater increment in the amounts of NAN (P < 0.001) and the total amino acid (P < 0.05) absorbed from the small intestines when sheep were given the SHG (NAN absorption, SHG 5.4 g/d, AHG 1.5 g/d, SED 0.54; total amino acid absorption SHG 31.5 g/d, AHG 14.3 g/d, SED 5.24).

4. Infusion of 30 g casein/d per abomasum of sheep given AHG at M and 1.5 M levels of intake increased (P < 0.05) the efficiency of utilization of the herbage from kf 0.45 to kf 0.57. Consideration is given to the possibility that the higher efficiency of utilization of ME in sheep given SHG may be related to the amounts of extra glucogenic amino acids absorbed from the small intestine which provide extra reducing equivalents (NADPH) and glycerol phosphate necessary for the conversion of acetate into fatty acids.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Agricultural research council (1984). The Nutrient Requirements of Ruminant Livestock, No. 1. Slough: Commonwealth Agricultural Bureau.Google Scholar
Armstrong, D. G. & Blaxter, K. L. (1957 a). British Journal of Nutrition 11, 247272.CrossRefGoogle Scholar
Armstrong, D. G. & Blaxter, K. L. (1957 b). British Journal of Nutrition 11, 413425.CrossRefGoogle Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1957). Proceedings of the British Society of Animal Production pp. 315.Google Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1960). Proceedings of the Nutrition Society 19, xxxi.Google Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1961). British Journal of' Nutrition 15, 169175.CrossRefGoogle Scholar
Beever, D. E., Terry, R. A., Cammell, S. B. & Wallace, A. S. (1978). Journal of Agricultural Science, Cambridge 90, 463470.CrossRefGoogle Scholar
Binnerts, W. T., van't Klooster, A. Th. & Frens, A. M. (1968). Veterinary Record 82, 470.Google Scholar
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants. London: Hutchinson.Google Scholar
Blaxter, K. L. & Boyne, A. W. (1978). Journal of Agricultural Science, Cambridge 90, 4768.Google Scholar
Blaxter, K. L., Wainman, F. W., Dewey, P. J. S., Davidson, J., Denerley, H. & Gunn, J. B. (1971). Journal of Agricultural Science, Cambridge 76, 307319.Google Scholar
Coelho da Silva, J. F., Seeley, R. C., Beever, D. E., Prescott, J. H. D. & Armstrong, D. G. (1972). British Journal of Nutrition 28, 357371.Google Scholar
Corbett, J. L., Langlands, J. P., McDonald, I. & Pullar, J. D. (1966). Animal Production 8, 1327.Google Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst, London 95, 181193.Google Scholar
Faichney, G. J. (1975). In Digestion and Metabolism in Ruminants, pp. 277291 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Fawcett, J. K. & Scott, J. E. (1960). Journal of Clinical Pathology 13, 156159.Google Scholar
Grovum, W. L. & Williams, V. J. (1973). British Journal of Nutrition 30, 313329.Google Scholar
Hecker, J. F. (1974). In Experimental Surgery on Small Ruminants, p. 126. London: Butterworths.Google Scholar
Lonsdale, C. R. & Taylor, J. C. (1971). Animal Production 13, 384.Google Scholar
McDonald, J. D., MacRae, J. C. & McKenzie, J. D. (1979). Laboratory Practice 28, 13171318.Google Scholar
McKenzie, J. D. & Kay, R. N. B. (1968). Journal of Science and Technology 14, 1516.Google Scholar
MacRae, J. C. & Lobley, G. E. (1982). Livestock Production Science 9, 447456.Google Scholar
Macrae, J. C. & Reeds, P. J. (1980). In Protein Deposition in Animals, pp. 225259 [Buttery, P. J. and Lindsey, D. B., editors]. london: Butterworths.Google Scholar
MacRae, J. C., Smith, J. S. & Dewey, P. J. S. (1983). Animal Production 36, 503.Google Scholar
Ørskov, E. R. & Allen, D. M. (1966 a). British Journal of Nutrition 20, 295305.Google Scholar
Ørskov, E. R. & Allen, D. M. (1966 b). British Journal of Nutrition 20, 509517.CrossRefGoogle Scholar
Ørskov, E. R. & Allen, D. M. (1966 c). British Journal of Nutrition 20, 519534.Google Scholar
Ørskov, E. R., Grubb, D. A., Smith, J. S., Webster, A. J. F. & Corrigall, W. (1979 a). British Journal of Nutrition 41, 541551.Google Scholar
Ørskov, E. R., Grubb, D. A., Wenham, G. & Corrigall, W. (1979 b). British Journal of Nutrition 41, 553558.Google Scholar
Ribeiro, J. M. C. R. (1979). Digestion and metabolism of forage diets by sheep. PhD Thesis, University of Aberdeen.Google Scholar
Ribeiro, J. M. C. R., MacRae, J. C. & Webster, A. J. F. (1981). Proceedings of the Nutrition Society 40, 12A.Google Scholar
Rook, J. A. F., Balch, C. C., Campling, R. C. & Fisher, L. J. (1963). British Journal of Nutrition 17, 399406.Google Scholar
Rose, W. C. (1938). Physiological Reviews 18, 109.Google Scholar
Rowett Research Institute (1975). Feedingstuffs Evaluation Unit First Report. Edinburgh: Department of Agriculture and Fisheries for Scotland.Google Scholar
Storm, E., Brown, D. S. & ørskov, E. R. (1983). British Journal of Nutrition 50, 479485.CrossRefGoogle Scholar
Tan, T. N., Weston, R. H. & Hogan, J. P. (1971). International Journal of Applied Radiation and Isotopes 22, 301308.Google Scholar
Wainman, F. W. & Blaxter, K. L. (1969). In Energy Metabolism of Farm Animals, pp. 429433 [Blaxter, K. L., Kielanowski, J. and Thorbek, G., editors]. Newcastle upon Tyne: Oriel Press.Google Scholar
Webster, A. J. F. (1978). The Management and Diseases of Sheep, pp. 166174. Slough:Commonwealth Agricultural Bureau.Google Scholar
Weller, R. A., Gray, F. V., Pilgrim, A. F. & Jones, G. B. (1967). Australian Journal of Agriculture Research 18, 107118.Google Scholar