Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T23:51:05.841Z Has data issue: false hasContentIssue false

Effects of substitution of tricaproin for tallow and of protein concentration in milk substitutes on nitrogen and energy balance in the preruminant lamb

Published online by Cambridge University Press:  09 March 2007

Bernard Aurousseau
Affiliation:
I.N.R.A., C.R.Z.V. de THEIX, Laboratoire d'Etude du Métabolisme Energétique, 63122 Ceyrat, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Results of 138 nitrogen balance studies from experiments with forty male Limousin and nineteen male Ile de France preruminant lambs were used to estimate total N requirements and to assess the effects of dietary tricaproin inclusion, protein concentration, lysine and methionine supplementation and the age of lambs on protein retention. In addition, energy balances were obtained in twenty-four of the Limousin lambs from birth up to 3 weeks of age by means of a slaughter technique.

2. For milk substitute unsupplemented with amino acids, tricaproin inclusion increased N balance slightly (P < 0.001) when a medium-protein concentration (260 g/kg dry matter (DM)) was used, in 2-week-old lambs (+4.3%) and in 5-week-old Limousin lambs (+5.3%), or very markedly when a high-protein concentration (320 g/kg DM) was used, in 2-week-old lambs (+14.5%) and in 5-week-old lambs (+18.6%). Protein requirements decreased from 300 g/kg DM in 3-week-old lambs to 270 g/kg DM in 5-week-old lambs for the control milk containing tallow-coconut oil mixture (0.67:0.33 by wt) and was increased above 300 g/kg DM at all ages in the case of experimental milk containing tallow-coconut oil-tricaproin mixture (0.33:0.33:0.33, by wt).

3. For milk containing either a medium- or a high-protein concentration and supplemented with lysine and methionine, inclusion of tricaproin increased N balance (P < 0.01) to a similar extent (+8.5 up to +14.3 %) in 1 to 2- and 3-week-old Limousin lambs. An increase in N concentration in the milk had no effect in 1 - and 2-week-old lambs, but led to a decreased N balance in 3-week-old lambs. Protein requirements decreased from 310 g/kg DM in 1-week-old lambs to 190 g/kg DM in 3-week-old lambs for the milk containing tallow-coconut oil or from 300 g/kg DM in 2-week-old lambs to 210 g/kg DM in 3-week-old lambs for the milk containing tallow-coconut oil-tricaproin.

4. For the Ile de France lambs given milk supplemented with lysine and methionine, tricaproin inclusion did not alter N balance. Protein requirements decreased from 370 g/kg DM in 2-week-old lambs to 270 g/kg DM in 4-week-old lambs for milk containing both kinds of fat mixtures.

5. Between birth and 3 weeks of age, efficiency of metabolizable energy (ME) utilization in the Limousin lambs was not dependent on the nature of the milk fat or the protein concentration of the diet (ME efficiency for tissue deposition varying from 0.672 to 0.698) whilst ME efficiency for protein deposition was 0.52 and ME efficiency for lipid deposition was close to 1; daily maintenance expenditure was 553 kJ/kg body-weight0.75

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1988

References

Alexander, G., Bell, A. W. & Williams, D. (1970) Biology of the Neonate 15, 198210.Google Scholar
Ambo, K., Takahashi, H. & Tsuna, T. (1973) Journal of Agricultural Research 24, 5462.Google Scholar
Ash, R. W., Pennington, R. J. & Reid, R. S. (1959) Biochemical Journal. 71, 9P.Google Scholar
Aurousseau, B. (1971) Annales de Biologie Animale, Biochimie, Biophysique 12, 263280.Google Scholar
Aurousseau, B. (1984) Annales de Zootechnie 33, 219234.CrossRefGoogle Scholar
Aurousseau, B. (1986) Diabéte et Métabolisme 12, 107108.Google Scholar
Aurousseau, B., Perez, J. M., Bouvier, J. C. & Vermorel, M. (1978) Annales de Biologic Animale, Biochimie, Biophysique 18, 11071115.CrossRefGoogle Scholar
Aurousseau, B., Vermorel, M. & Bouvier, J. C. (1983 a) Reproduction, Nutrition, Développement 23, 587597.CrossRefGoogle Scholar
Aurousseau, B., Vermorel, M. & Bouvier, J. C. (1984) Reproduction, Nutrition, Développement 24, 265279.CrossRefGoogle Scholar
Aurousseau, B., Vermorel, M. & Theriez, M. (1983 b) Annales de Zootechnie 32, 441458.Google Scholar
Bachacou, J., Masson, J. P. & Millier, C. (1981). Manuel de la Programmathèque Statistique AMANCE 81, pp. 209270. Paris: INRA.Google Scholar
Berry, M. N., Clark, D. G., Grivell, A. R., Wallance, P. G. (1983) European Journal of Biochemistry 131, 205214.CrossRefGoogle Scholar
Black, J. L. & Griffiths, D. A. (1975) British Journal of Nutrition 33, 399413.Google Scholar
Buttery, P. J. & Boorman, K. N. (1976). In Protein Metabolism and Nutrition, pp. 197206. [Cole, D.J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: Butterworths.Google Scholar
Chenat, M. C., Aurousseau, B. & Vermorel, M. (1976) Annales de Biologie Animale, Biochimie, Biophysique 16, 603622.CrossRefGoogle Scholar
Chiou, P. W. S. & Jordan, R. M. (1973) Journal of Animal Science 37, 581587.Google Scholar
Colebrook, W. F. & Black, J. L. (1981) Animal Production 33, 253258.Google Scholar
Degen, A. A. & Young, B. A. (1982) Journal of Animal Science 54, 353362.Google Scholar
Demarne, Y., Epo, N. & Flanzy, J. (1978) Archives Internationales de Physiologic et de Biochimie 86, 2535.Google Scholar
Dove, H., Pearce, G. R. & Tribe, D. E. (1977 a) Australian Journal of Agricultural Research 28, 917932.Google Scholar
Dove, H., Pearce, G. R. & Tribe, D. E. (1977 b) Australian Journal of Agricultural Research 28, 933946.Google Scholar
Kielanowski, U. (1976). In Protein Metabolism and Nutrition, pp. 207215 [Cole, D.J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: Butterworths.Google Scholar
Koppel, J., Kuchar, S., Mozes, S., Herzova, J. & Boda, K. (1982) Hormone and Metabolic Research 12, 631633.CrossRefGoogle Scholar
Kurup, G. M., Leelamma, S. & Kurup, P. A. (1983) Indian Journal of Biochemistry and Biophysics 19, 347351.Google Scholar
Lavau, M. H. & Hashim, S. A. (1978) Journal of Nutrition 108, 613620.CrossRefGoogle Scholar
Liebenberg, L. H. P. & Van der Merwe, F. J. (1974) South African Journal of Animal Science 4, 2126.Google Scholar
Martin, A. K. & Blaxter, K. L. (1964). In Energy Metabolism of Farm Animals, pp. 8391. [Blaxter, K. L., editor]. London and New York: Academic Press.Google Scholar
Milligan, L. P. & Summers, M. (1986) Proceedings of the Nutrition Society 45, 185193.Google Scholar
Millward, D. J., Bates, P. C., de Benoist, B., Brown, J. G., Cow, M., Halliday, D., Odedra, B. & Rennie, M. J. (1983). In Protein Metabolism and Nutrition, pp. 6996. [Arnal, M., Pion, R. and Bonin, D., editors]. Clermont-Ferrand: INRA.Google Scholar
Newport, M. J., Storry, J. E. & Tuckley, B. (1979) British Journal of Nutrition 41, 8593.Google Scholar
Patureau-Mirand, P. & Theriez, M. (1977). Annales de Zootechnie 26, 287. (Abstr.)Google Scholar
Prior, R. L. & Smith, S. B. (1982) Federation Proceedings 40, 25452549.Google Scholar
Reeds, P. J., Wahle, K. W. J. & Haggarty, P. (1982) Proceedings of the Nutrition Society 41, 155158.Google Scholar
Said, A., Mueller, I., Kolb, E., Gruender, G., Schmidt, V., Schineff, C., Gottschild, C. & Vallentin, G. (1986 a) Archiv für Experimentelle Veterinärmedizin 40, 183194.Google Scholar
Said, A., Mueller, I., Kolb, E., Gruender, G., Schmidt, U., Schineff, C., Gottschild, C. & Vallentin, G. (1986 b) Archiv für Experimentelle Veterinärmedizin 40, 195205.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1956). Statistical Methods. p. 85. Ames, Iowa: Iowa State College Press.Google Scholar
Sykes, A. R. & Field, A. C. (1972) Journal of Agricultural Science, Cambridge. 78, 119125.Google Scholar
Thapar, M. & Singh, S. (1983) Zeitschrift für Ernährungswissenschaften 22, 2733.Google Scholar
Theriez, M., Patureau-Mirand, P. & Molenat, G. (1977) Annales de Zootechnie 24, 297313.Google Scholar
Tissier, M., Bechet, G. & Molenat, G. (1975) Annales de Zootechnie 24, 595602.Google Scholar
Vermorel, M. & Aurousseau, B. (1970). In Energy Metabolism of Farm Animals pp. 185188 [Schurch, A. and Wenk, C., editors]. Zurich: Juris Druck Verlag.Google Scholar
Vermorel, M., Bouvier, J. C., Bonnet, Y. & Fauconneau, G. (1973) Annales de Biologic Animale, Biochimie, Biophysique 13, 659681.Google Scholar
Vermorel, M., Dardillat, C., Vernet, J., Saido, S. & Demigne, C. (1984). In Physiologic et Patologie Périnatales chez les Animaux de Ferme [Jarrige, R. editor]. Paris: INRA.Google Scholar
Villette, Y. & Aurousseau, B. (1981) Annales de Zootechnie 30, 285298.CrossRefGoogle Scholar
Walker, D. M. (1975) Australian Journal of Agricultural Research 26, 681688.Google Scholar
Walker, D. M. & Cook, L. J. (1967) British Journal of Nutrition 21, 237256.CrossRefGoogle Scholar
Walker, D. M. & Faichney, G. J. (1964) British Journal of Nutrition 18, 295306.Google Scholar
Walker, D. M. & Kirk, R. D. (1975) British Journal of Nutrition 26, 673679.Google Scholar
Walker, D. M. & Norton, B. W. (1971) British Journal of Nutrition 26, 1529.CrossRefGoogle Scholar
Yamdagni, S., Schultz, L. H. & Radloff, H. D. (1968) Journal of Dairy Science 51, 10941097.Google Scholar