Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T00:50:17.587Z Has data issue: false hasContentIssue false

Effects of removal of the forestomach and caecum on the utilization of dietary urea in golden hamsters (Mesocricetus auratus) given two different diets

Published online by Cambridge University Press:  09 March 2007

Ei Sakaguchi
Affiliation:
Faculty of Agriculture, Tohoku University, Sendai 980, Japan
Junichi Itoh
Affiliation:
Faculty of Agriculture, Tohoku University, Sendai 980, Japan
Hisashi Shinohara
Affiliation:
Faculty of Agriculture, Tohoku University, Sendai 980, Japan
Tatsuro Matsumoto
Affiliation:
Faculty of Agriculture, Tohoku University, Sendai 980, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Surgical removal of the forestomach, the caecum or both the forestomach and the caecum, was performed on growing male golden hamsters (Mesocricetus auratus) given a low-or high-fibre diet.

2. In Expt J, 18 d after surgery, the hamsters which were given a concentrate before surgery were given an experimental low-fibre diet containing urea or [15N]urea (10 g/kg diet) for 9 d. In Expt 2, 5 d after surgery, the hamsters which were given a forage diet before surgery were adapted to an experimental high-fibre diet containing urea (10 g/kg) and dried Italian ryegrass (Lolium italicum) powder (400 g/kg diet) for 5 d, and 10 d after surgery, given a diet containing [l5N]urea (10 g/kg diet) for 9 d.

3. In both experiments, removal of the caecum resulted in a significant lowering of both weight-gain and the digestibility of the dry matter, and removal of the forestomach resulted in a significant decrease of both accumulation of 15N in the body protein and proportion of l5N retained in the body protein as a proportion of the administered dosage.

4. The effect of removal of the caecum on the utilization of [15N]urea was not apparent in Expt 1, but the utilization of [15N]urea was significantly lowered by removal of the caecum in Expt 2.

5. These results suggest that the caecum may play a more important role in food utilization than the forestomach. However, the forestomach of the golden hamster plays a significant role in the utilization of dietary urea. It is presumed that the role of the caecum in the utilization of urea may vary under different dietary conditions.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Association of Official Analytical Chemists (1975). Official Methods of Analysis of the Association of Analytical Chemists, 12th ed. Washington: Association of Official Analytical Chemists.Google Scholar
Banta, C. A., Warner, R. G. & Robertson, J. B. (1975). J. Nutr. 105, 38.CrossRefGoogle Scholar
Bloch, K. (1946). J. biol. Chem. 165, 469.CrossRefGoogle Scholar
Bock, H. D., Kowa, J., Krawielitzki, K., Völker, T., Wünsche, J. & Zebrowska, T. (1976). Arch. Tierernähr. 26, 777.CrossRefGoogle Scholar
Davies, R. E. & Kornberg, H. L. (1950). Biochem. J. 47, viii.Google Scholar
Deguchi, E., Niiyama, M., Kagota, K. & Namioka, S. (1978). J. Nutr. 108, 1572.CrossRefGoogle Scholar
Duncan, D. B. (1955). Biometrics 11, 1.CrossRefGoogle Scholar
Ehle, F. R. & Warner, R. G. (1978). J. Nutr. 108, 1047.CrossRefGoogle Scholar
Fürst, P. & Jonsson, A. (1971). Acta chem. scand. 25, 930.CrossRefGoogle Scholar
Grimson, R. E., Bowland, J. P. & Milligan, L. P. (1971). Can. J. Anim. Sci. 51, 103.CrossRefGoogle Scholar
Harper, A. E. (1959). J. Nutr. 68, 406.CrossRefGoogle Scholar
Hoover, W. H., Mannings, C. L. & Sheerin, H. E. (1969). J. Anim. Sci. 28, 349.CrossRefGoogle Scholar
Imai, S., Lap, H. T. & Ogimoto, K. (1976). Jap. J. Parasit. 25 Suppl. 83.Google Scholar
Kunstyr, I. (1974). Zentbl. VetMed. 21A, 553.Google Scholar
Liu, C. H., Hays, V. M., Svec, H. J., Catron, D. V., Ashton, G. C. & Speer, V. G. (1955). J. Nutr. 57, 241.CrossRefGoogle Scholar
Manda, T. (1979). Jap. Agric. Res. Quart. 13, 110.Google Scholar
Manda, T. & Takano, N. (1976). J. Jap. Grassld. Sci. 22, 46.Google Scholar
Matsumoto, T. (1955). Tohoku J. agric. Res. 6, 127.Google Scholar
Murai, M. & Manda, T. (1977). Exp. Herbivora 2 Suppl., 70.Google Scholar
Niiyama, M., Deguchi, E., Kagota, K. & Namioka, S. (1979). Am. J. vet. Res. 40, 716.Google Scholar
Niiyama, M., Kagota, K., Iwase, T. & Namioka, S. (1978). Jap. J. vet. Sci. 40, 575.CrossRefGoogle Scholar
Sakaguchi, E., Horiguchi, M. & Matsumoto, T. (1978). Jap. J. zootech. Sci. 49, 653.Google Scholar
Sakata, T. & Tamate, H. (1976). Tohoku J. agric. Res. 27, 26.Google Scholar
Shinohara, H., Kayaba, T. & Mizuma, Y. (1977). Exp. Herbivora 2 suppl., 29.Google Scholar
Slade, L. M., Bishop, R., Morris, J. G. & Robinson, D. W. (1971). Br. vet. J. 127, xi.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames: Iowa State University Press.Google Scholar
Snyderman, S. E., Holt, L. E. Jr, Dancis, J., Roitman, E., Boyer, A. & Balis, M. E. (1962). J. Nutr. 78, 57.CrossRefGoogle Scholar
Tseng, R. Y. L., Cohen, N. L., Reyes, P. S. & Briggs, G. M. (1976). J. Nutr. 106, 77.CrossRefGoogle Scholar
Walser, M. & Bodenlos, L. J. (1959). J. clin. Invest. 38, 1617.CrossRefGoogle Scholar
Yang, M. G., Bergen, W. G., Sculthorpe, A. E. & Mickelsen, O. (1972). Proc. Soc. exp. Biol. Med. 139, 1312.CrossRefGoogle Scholar