Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T18:10:08.870Z Has data issue: false hasContentIssue false

Effects of organic and inorganic sulphur on the availability of dietary copper to sheep

Published online by Cambridge University Press:  24 July 2007

N. F. Suttle
Affiliation:
Moredun Research Institute, Edinburgh EH17 7JH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of dietary sulphur on the availability of dietary copper were estimated by means of a repletion technique. The responses of initially hypocupraemic ewes to repletion with Cu-supplemented diets containing supplements of organic S, as methionine, and of inorganic S, as Na2SO4, were compared with those obtained with a diet low in S.

2. The two forms of S had similar effects. Responses in plasma Cu were reduced by 39–56 % when S was increased from 1.0 to 3.0 or 4.0 g/kg diet and the availability of dietary Cu was estimated to have decreased from 0.062 to 0.041. Both S supplements produced marked increases in rumen sulphide concentrations.

3. Dietary S had no effect on plasma Cu when added to the low-Cu diet of hypocupraemic ewes being repleted by a continuous intravenous infusion of Cu.

4. The addition of CuS, providing 5 mg Cu/kg, to the diet of hypocupraemic ewes produced no response in plasma Cu or haemoglobin. The same amount of Cu, given as CuSO4, increased plasma Cu by 0.46±0.15 mg/l and haemoglobin by 33±3.8 g/l after 36 d: the subsequent replacement of CuSO4 by CuS induced hypocupraemia again but had no effect on haemoglobin.

5. It was concluded that variations in dietary S within the normal range for herbage exert an independent effect on Cu metabolism, possibly through the formation of insoluble CuS at sites beyond the rumen.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Allcroft, R. & Lewis, G. (1956). Landbouwk. Tijdschr., 's-Grav. 68, 711.Google Scholar
Anderson, C. (1956). N. Z. Jl Sci. Technol. 37, 379.Google Scholar
Bird, P. R. (1970). Proc. Aust. Sac. Anim. Prod. 8, 212.Google Scholar
Bird, P. R. & Fountain, R. D. (1970). Analyst, Lond. 95, 98.CrossRefGoogle Scholar
Bosman, M. S. M. (1965). Jaarb. Inst. biol. scheik. Onderz. LandbGewass. p. 97.Google Scholar
Bosman, M. S. M. (1966). Jaarb. Inst. biol. scheik. Onderz. LandbGewass. p. 73.Google Scholar
Bowland, J. P., Braude, R., Chamberlain, A. G., Glascock, R. F. & Mitchell, K. G. (1961). Br. J. Nutr. 15, 59.Google Scholar
Bremner, I. (1970). Br. J. Nutr. 24, 769.Google Scholar
Dick, A. T. (1953 a). Aust. vet. J. 29, 18.CrossRefGoogle Scholar
Dick, A. T. (1953 b). Aust. vet. J. 29, 133.Google Scholar
Dick, A. T. (1954). Aust. J. agric. Res. 5, 511.CrossRefGoogle Scholar
Furrer, O. J. (1966). Schweiz. Landw. Mh. 4, 125.Google Scholar
Goodrich, R. D. & Tillman, A. D. (1966). J. Anim. Sci. 25, 484.CrossRefGoogle Scholar
Hartmans, J. (1970). In Trace Element Metabolism in Animals p. 441 [Mills, C. F., editor]. Edinburgh: E. & S. Livingstone.Google Scholar
Hartmans, J. & Bosman, M. S. M. (1970). In Trace Element Metabolism in Animals p. 362 [Mills, C. F., editor]. Edinburgh: E. & S. Livingstone.Google Scholar
Hartmans, J. & Van der Grift, J. (1964). Jaarb. Inst. biol. scheik. Onderz. LandbGewass. p. 145.Google Scholar
Hume, I. D. & Bird, P. R. (1970). Aust. J. agric. Res. 21, 315.Google Scholar
Johnson, D. A., Osaki, S. & Frieden, E. (1967). Clin. Chem. 13, 142.CrossRefGoogle Scholar
Marcilese, N. A., Ammerman, C. B., Valsecchi, R. M., Dunavant, B. G. & Davis, G. K. (1969). J. Nutr. 99, 177.CrossRefGoogle Scholar
Mylrea, P. J. (1958). Aust. J. agric. Res. 9, 383.CrossRefGoogle Scholar
Schulze, M. O., Elvehjem, C. A. & Hart, E. B. (1936). J. biol. Chem. 115, 453.CrossRefGoogle Scholar
Smith, B. S. W. & Wright, H. (1974). Clinica Chim. Acta (In the Press.)Google Scholar
Snedecor, G. W. (1956). Statistical Methods Applied to Experiments in Agriculture and Biology 5th ed., p. 291. Ames, Iowa: Iowa State College Press.Google Scholar
Spaïs, A. G. (1959). Ask. vet. Derg. 135, 161.Google Scholar
Suttle, N. F. (1974). Br. J. Nutr. 32, 365.Google Scholar
Suttle, N. F. & Field, A. C. (1968). J. Comp. Path. Ther. 78, 78.CrossRefGoogle Scholar
Todd, J. R. (1972). J. agric. Sci., Camb. 79, 351.Google Scholar
Van Koetsveld, E. (1955). Tijdschr. Diergeneesk. 80, 191.Google Scholar
Whitehead, D. C. (1966). Rep. Grassld. Res. Inst. no. 4, p. 21.Google Scholar
Wynne, K. N. & McClymont, G. L. (1956). Aust. J. agric. Res. 7, 45.Google Scholar