Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T20:29:47.608Z Has data issue: false hasContentIssue false

Effects of orally administered Lactobacillus casei DN-114 001 on the composition or activities of the dominant faecal microbiota in healthy humans

Published online by Cambridge University Press:  08 March 2007

Violaine Rochet*
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
Lionel Rigottier-Gois
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
Maléne Sutren
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
Marie-Noëlle Krementscki
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
Claude Andrieux
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
Jean-Pierre Furet
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
Patrick Tailliez
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
Florence Levenez
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
Agnés Mogenet
Affiliation:
Centre d'Investigation Clinique AP-HP/Inserm, Hôpital Necker – Enfants Malades et Université Paris V, Paris, France
Jean-Louis Bresson
Affiliation:
Centre d'Investigation Clinique AP-HP/Inserm, Hôpital Necker – Enfants Malades et Université Paris V, Paris, France
Séverine Méance
Affiliation:
Danone Vitapole, 91 767 Palaiseau Cedex, France
Chantal Cayuela
Affiliation:
Danone Vitapole, 91 767 Palaiseau Cedex, France
Antony Leplingard
Affiliation:
Danone Vitapole, 91 767 Palaiseau Cedex, France
Joël Dore
Affiliation:
Institut National de la Recherche Agronomique, Unité d'Ecologie et Physiologie du Systéme Digestif, Bâtiment 405, Domaine de Vilvert, 78 352 Jouy en Josas Cedex, France
*
*corresponding author: Dr V. Rochet, fax +33 1 34 65 24 92, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The composition and activities of the faecal microbiota in twelve healthy subjects analysed in a single open study were monitored before (1-week baseline step), during (10d supplementation step) and after (10d follow-up step) the ingestion of a fermented milk containing Lactobacillus casei DN-114001. Fluorescent in situ hybridisation with group-specific DNA probes, real-time PCR using L. paracasei group-specific primers and temporal temperature gradient gel electrophoresis (TTGE) using group-specific primers were carried out, together with bacterial enzyme activity and metabolite analyses to monitor the structure and activities of the faecal microbiota. L. casei DNA was detected in the faeces of all of the subjects by TTGE after 10d supplementation. Its quantification by real-time PCR showed a 1000-fold increase during the test step compared with initial levels. No major modification in either the dominant members of the faecal microbiota or their activities was observed during the trial. In conclusion, the short-term consumption of a milk product containing L. casei DN-114001 was accompanied by a high, transient increase in the quantity of this strain in the faeces of all of the subjects without markedly affecting biochemical or bacteriological factors.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Agence Française de Securité Sanitaive des Aliments Alimentation infantile et modification de la flore intestinale. 2003 http://www.afssa.fr/ftp/afssa/basedoc/Floreintestinale.pdf.Google Scholar
Alander, M, Satokari, R, Korpela, R, Saxelin, M, Villpponen-Salmela, T, Mattila-Sandholm, T & von Wright, APersistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 1999 65, 351354.CrossRefGoogle ScholarPubMed
Amann, RI, Binder, BJ, Olson, RJ, Chisholm, SW, Devereux, R & Stahl, DACombination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990 56, 19191925.CrossRefGoogle ScholarPubMed
Andrieux, C, Membre, JM, Cayuela, C & Antoine, JMMetabolic characteristics of the faecal microflora in humans from three age groups. Scand J Gastroenterol 2002 37, 792798.CrossRefGoogle ScholarPubMed
Boehler, N, Riottot, M, Ferezou, J, Souidi, M, Serougne, C, Smith, JL & Lutton, CAntilithiasic effect of beta-cyclodextrin in LPN hamster: comparison with cholestyramine. J Lipid Res 1999 40, 726734.CrossRefGoogle ScholarPubMed
Bouhnik, Y, Fluorie, B, Riottot, M, Bisetti, N, Gailing, MF, Guibert, A, Bornet, F & Rambaud, JCEffects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr Cancer 1996 26, 2129.Google Scholar
Collins, JK, Dunne, C, Murphy, L, et al.. A randomised controlled trial of a probiotic Lactobacillus strain in healthy adults: assessment of its delivery, transit and influence on microbial flora and enteric immunity. Microbial Ecol Health Dis 2002 14, 8189.Google Scholar
Drouault, S & Corthier, GHealth effects of lactic acid bacteria ingested in fermented milk. Vet Res 2001 32, 101117.Google Scholar
Franks, AH, Harmsen, HJ, Raangs, GC, Jansen, GJ, Schut, F & Welling, GWVariations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 1998 64, 33363345.CrossRefGoogle ScholarPubMed
Fujiwara, S, Seto, Y, Kimura, A & Hashiba, HIntestinal transit of an orally administered streptomycin-rifampicin-resistant variant of Bifidobacterium longum SBT2928: its long-term survival and effect on the intestinal microflora and metabolism. J Appl Microbiol 2001 90, 4352.CrossRefGoogle ScholarPubMed
Fuller, RProbiotics in man and animals. J Appl Bacteriol 1989 66, 365378.Google Scholar
Furet, JP, Quenee, P & Tailliez, P (2004) Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int J Food Microbiol 97, 197207.Google Scholar
Gibson, GR, Beatty, ER, Wang, Xa Cummings, JHSelective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 1995 108, 975982.CrossRefGoogle ScholarPubMed
Gibson, GR, Rastall, RA & Roberfroid, MBPrebiotics. In Colonic Microbiota, Nutrition and Health, pp. 101124 [Roberfroid,, MB editor]. Dordrecht: Kluwer Academic. 1999.CrossRefGoogle Scholar
Goldin, BRHealth benefits of probiotics. Br J Nutr 1998 80, S203S207.Google Scholar
Goldin, BR, Gorbach, SL, Saxelin, M, Barakat, S, Gualtieri, L & Salminen, SSurvival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 1992 37, 121128.CrossRefGoogle ScholarPubMed
Guérin-Danam, C, Chabanet, C, Pedone, C, Popot, F, Vaissade, P, Bouley, C, Szylit, O & Andrieux, CMilk fermented with yogurt cultures and Lactobacillus casei compared with yogurt and gelled milk: influence on intestinal microflora in healthy infants. Am J Clin Nutr 1998 67, 111117.CrossRefGoogle Scholar
Harmsen, HJ, Elfferich, P, Schut, F & Welling, GWA 16S rRNA-targeted probe for detection of Lactobacilli and Enterococci in faecal samples by fluorescent In Situ hybridization. Microbial Ecol Health Dis 1999 11, 312.Google Scholar
Harmsen, HJM, Wildeboer-Veloo, ACM, Grijpstra, J, Knol, J, Degener, JE & Welling, GWDevelopment of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 2000 66, 45234527.CrossRefGoogle ScholarPubMed
Langendijk, PS, Schut, F, Jansen, GJ, Raangs, GC, Kamphuis, GR, Wilkinson, MH & Welling, GWQuantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 1995 61, 30693075.CrossRefGoogle ScholarPubMed
Lee, YK, Ho, PS, Low, CS, Arvilommi, H & Salminen, SPermanent colonization by Lactobacillus casei is hindered by the low rate of cell division in mouse gut. Appl Environ Microbiol 2004 70, 670674.CrossRefGoogle ScholarPubMed
Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJProtein measurement with the Folin phenol reagent. J Biol Chem 1951 193, 265275.Google Scholar
Manz, W, Amann, R, Ludwig, W, Vancanneyt, M & Schleifer, KHApplication of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophagaflavobacter-bacteroides in the natural environment. Microbiology 1996 142, 10971106.Google Scholar
Marteau, PR, de Vrese, M, Cellier, CJ & Schrezenmeir, JProtection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 2001 73, 430S436S.Google Scholar
Marteau, P, Flourie, B, Pochart, P, Chastang, C, Desjeux, JF & Rambaud, JCEffect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. Br J Nutr 1990 64, 7179.CrossRefGoogle Scholar
Matsuki, T, Watanabe, K, Fujimoto, J, Miyamoto, Y, Matsumoto, K, Oyaizu, H & Tanaka, RDevelopment of 16S rRNAgene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 2002 68, 54455451.Google Scholar
Ott, SJ, Musfeldt, M, Wenderoth, DF, Hampe, J, Brant, O, Folsch, UR, Timmis, KN & Schreiber, SReduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004 53, 685693.CrossRefGoogle ScholarPubMed
Panda, SK, Chattoraj, SC & Broitman, SACorrelation of neomycin, faecal neutral and acid sterols with colon carcinogenesis in rats. Br J Cancer 1999 80, 11321136.CrossRefGoogle ScholarPubMed
Pedone, CA, Arnaud, CC, Postaire, ER, Bouley, CF & Reinett, PMulticentric study of the effect of milk fermented by Lactobacillus casei on the incidence of diarrhoea. Int J Clin Pract 2000 54, 568568.Google Scholar
Pedone, CA, Bernabeu, AO, Postaire, ER, Bouley, CF & Reinett, PThe effect of supplementation with milk fermented by Lactobacillus casei (strain DN-114 001) on acute diarrhoea in children attending day care centres. Int J Clin Pract 1999 53, 179184.CrossRefGoogle ScholarPubMed
Rachmilewitz, D, Katakura, K, Karmeli, F, Hayashi, T, Reinus, C, Rudensky, B, Akira, S, Takeda, K, Lee, J, Takabayashi, K & Raz, EToll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004 126, 520528.CrossRefGoogle ScholarPubMed
Rigottier-Gois, L, Le Bourhis, A-G, Gramet, G, Rochet, V & Dore, JFluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol Ecol 2003 43, 237245.Google Scholar
Rochet, V, Rigottier-Gois, L, Beguet, F & Dore, JComposition of human intestinal flora analysed by fluorescent in situ hybridisation using group-specific 16S rRNA-targeted oligonucleotide probes. Genet Sel Evol 2001 33, Suppl. 1, S339S352.Google Scholar
Salminen, S, Bouley, C, Boutron-Ruault, MC, Cummings, JH, Franck, A, Gibson, GR, Isolauri, E, Moreau, MC, Roberfroid, M & Rowland, IFunctional food science and gastrointestinal physiology and function. Br J Nutr 80, Suppl. 1998 1, S147S171.Google Scholar
Satokari, RM, Vaughan, EE, Akkermans, AD, Saarela, M & de Vos, WMBifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 2001 67, 504513.CrossRefGoogle ScholarPubMed
Seksik, P, Rigottier-Gois, L, Gramet, G, Sutren, M, Pochart, P, Marteau, P, Jian, R & Dore, JAlterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 2003 52, 237242.Google Scholar
Sghir, A, Gramet, G, Suau, A, Rochet, VPochart, P & Dore, JQuantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 2000 66, 22632266.Google Scholar
Siitonen, S, Vapaatalo, H, Salminen, S, Gordin, A, Saxelin, M, Wikberg, R & Kirkkola, ALEffect of Lactobacillus GG yoghurt in prevention of antibiotic associated diarrhoea. Ann Med 1990 22, 5759.Google Scholar
Suau, A, Bonnet, R, Sutren, M, Godon, JJ, Gibson, GR, Collins, MD & Doré, JDirect analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999 65, 47994807.CrossRefGoogle ScholarPubMed
Suau, A, Rochet, V, Sghir, A, Gramet, G, Brewaeys, S, Sutren, M, Rigottier-Gois, L & Dore, JFusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol 2001 24, 139145.Google Scholar
Tannock, GWAnalysis of the intestinal microflora using molecular methods. Eur J Clin Nutr 2002 56, Suppl. 4, S44S49.CrossRefGoogle ScholarPubMed
Tannock, GW, Munro, K, Harmsen, HJ, Welling, GW, Smart, J & Gopal, PKAnalysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 2000 66, 25782588.Google Scholar
Vaughan, EE, Mollet, B & deVos, WMFunctionality of probiotics and intestinal lactobacilli: light in the intestinal tract tunnel. Curr Opin Biotechnol 1999 10, 505510.Google Scholar
Wallner, G, Amann, R & Beisker, WOptimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 1993 14, 136143.Google Scholar
Walter, J, Tannock, GW, Tilsala-Timisjarvi, A, Rodtong, S, Loach, DM, Munro, K & Alatossava, TDetection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 2000 66, 297303.Google Scholar
Wang, RF, Cao, WW & Cerniglia, CEPCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 1996 62, 12421247.CrossRefGoogle ScholarPubMed
Zoetendal, EG, Akkermans, AD, Akkermans-van Vliet, WM, de Visser, AGM & De Vos, WMThe host genotype affects the bacterial community in the human gastrointestinal tract. Microbial Ecol Health Dis 2001 13, 129134.Google Scholar
Zoetendal, EG, Akkermans, AD & De Vos, WMTemperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 1998 64, 38543859.Google Scholar