Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T16:12:26.407Z Has data issue: false hasContentIssue false

Effects of lactation on circulating plasma metabolites in ‘cafeteria-fed’ rats

Published online by Cambridge University Press:  09 March 2007

J. Salvadö
Affiliation:
Bioquímica i Biologia Molecular, Facultat de Ciències Químiques de Tarragona, Universitat de Barcelona, 43071 Tarragona, Spain
T. Segués
Affiliation:
Bioquímica i Biologia Molecular, Facultat de Ciències Químiques de Tarragona, Universitat de Barcelona, 43071 Tarragona, Spain
M. Alemany
Affiliation:
Bioquímica i Biologia Molecular, Facultat de Ciències Químiques de Tarragona, Universitat de Barcelona, 43071 Tarragona, Spain
L. L. Arola
Affiliation:
Bioquímica i Biologia Molecular, Facultat de Ciències Químiques de Tarragona, Universitat de Barcelona, 43071 Tarragona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of ‘cafeteria feeding’ on primiparous Wistar rats during lactation have been studied by measuring circulating levels of glucose, amino acids, lactate, urea and ammonia as well as glycogen levels in liver and muscle.

2. No significant changes in glucose levels were observed despite alterations in blood glucose compartmentation.

3. Compared with controls, the dams given the cafeteria diet had higher liver glycogen stores which were more easily mobilized at the peak of lactation.

4. Rats given the cafeteria diet showed a lower amino acid utilization than controls and adequately maintained circulating levels, as determined by the lower circulating levels of ammonia and urea.

5. No significant differences in body-weight were observed in the period studied despite increasing dam weight after weaning in the cafeteria-fed group.

6. The size of pups of cafeteria-fed dams was greater than that of controls, and the differences were marked after weaning, when the metabolic machinery of the cafeteria pup maintained high protein accretion and body build-up using fat as the main energy substrate characteristic of the preweaning stage. The controls, however, changed to greater utilization of amino acids as an energy substrate and adapted to high-protein (low- biological-quality) diets with a significantly different pattern of circulating nitrogen distribution.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Arola, LI., Herrera, E. & Alemany, M. (1977). Analytical Biochemistry 82, 236239.CrossRefGoogle Scholar
Arola, LI., Palou, A., Remesar, X. & Alemany, M. (1982). Hormone and Metabolic Research 14, 364371.CrossRefGoogle Scholar
Arola, LI., Palou, A., Remesar, X. & Alemany, M. (1984). Archives Internationales de Physiologie et de Biochimie 92, 297303.CrossRefGoogle Scholar
Babický, A., Pavlik, L., Parizek, J., Pibr, B., Kolár, J. & Ostadalovà, I. (1975). Physiologia Bohemoslovaca 24, 97104.Google Scholar
Barber, T., Viña, J. R., Viña, J. & Cabo, J. (1984). 612th meeting of the biochemical societyLondon, Abstr. 123.Google Scholar
Bergmeyer, H. U., Bernt, E., Schmidt, F. & Stork, H. (1974). In Methods of Enzymatic Analysis, pp. 11961201 [Bergmeyer, H. U., editor]. New york: Academic press.Google Scholar
Bray, G. A. (1977). Federation Proceedings 36, 148153.Google Scholar
Castellà, J. (1985). Calorimetria diferencial dels efectes d'una dieta auto-selectiva hipercalòrica sobre la rata en diferents situacions fisiològiques. MS thesis, University of Barcelona.Google Scholar
Chaney, A. L. & Marbach, E. P. (1962). Clinical Chemistry 8, 130132.CrossRefGoogle Scholar
Cripps, A. W. & Williams, V. J. (1975). British Journal of Nutrition 33, 1732.CrossRefGoogle Scholar
Cunningham, J., Calles, J., Eiskowitz, L., Zawalich, W. & Felig, P. (1983). Diabetes 32, 10231027.CrossRefGoogle Scholar
Fraga, F. (1956). Investigación Pesquera 3, 6974.Google Scholar
Freinkel, N., Metzger, B. E., Nitzam, M., Hare, J. W., Marshall, R. T., Surmaczynska, B. Z. & Nagel, T. C. (1972). Israel Journal of Medical Sciences 2, 426439.Google Scholar
Good, C. A., Kramer, H. & Somogyi, M. (1983). Journal of Biological Chemistry 100, 485.CrossRefGoogle Scholar
Hohorst, H. H. (1965). In Methods of Enzymatic Analysis, pp. 266270 [Bergmeyer, H. U., editor]. New york: Academic press.CrossRefGoogle Scholar
Itzhak, R. F. & Gill, D. M. (1964). Analytical Biochemistry 9, 401410.CrossRefGoogle Scholar
Kalb, V. F., Donohue, T. J., Corrigan, M. G. & Bernlohr, R. W. (1977). Analytical Biochemistry 90, 4757.CrossRefGoogle Scholar
Martin, R. J. (1976). Federation Proceedings 35, 22912294.Google Scholar
Morgan, E. H. (1973). Australian Journal of Experimental Biology and Medical Sciences 51, 667678.CrossRefGoogle Scholar
Palou, A., Arola, LI. & Alemany, M. (1977). Biochemical Journal 166, 4955.CrossRefGoogle Scholar
Palou, A., Remesar, X., Arola, LI. & Alemany, M. (1980). Diabète et Mètabolisme 6, 271275.Google Scholar
Palou, A., Remesar, X., Arola, LI. & Alemany, M. (1982). Archives Internationales de Physiologie et de Biochimie 90, 185190.CrossRefGoogle Scholar
Roberts, S. B. & Coward, W. A. (1985). British Journal of Nutrition 53, 19.CrossRefGoogle Scholar
Rolls, B. J. & Rowe, E. A. (1982). Physiology and Behavior 28, 393400.CrossRefGoogle Scholar
Rolls, B. J., Rowe, E. A, Fahrbach, S. E., Agius, L. & Williamson, D. H. (1980). Proceedings of the Nutrition Society 39, 51A.Google Scholar
Rothwell, N. J., Saville, M. E. & Stock, M. J. (1982). Journal of Nutrition 112, 15151524.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1979). Nature 281, 3135.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1982). British Journal of Nutrition 47, 461471.CrossRefGoogle Scholar
Sclafani, A. & Springer, D. (1976). Physiology and Behavior 17, 461471.CrossRefGoogle Scholar
Snell, K. & Walker, D. G. (1973). Enzyme 15, 4081.Google Scholar
Soley, M., Herrera, E. & Alemany, M. (1982). Molecular Physiology 2, 8997.Google Scholar
Somogyi, M. (1945). Journal of Biological Chemistry 160, 6973.CrossRefGoogle Scholar
Spray, C. M. (1950). British Journal of Nutrition 4, 354360.CrossRefGoogle Scholar
White, P. K. & Miller, S. A. (1976). Pediatric Research 10, 158163.CrossRefGoogle Scholar
Yemm, E. W. & Cocking, E. C. (1955). Analyst 80, 209213.CrossRefGoogle Scholar