Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T23:54:25.809Z Has data issue: false hasContentIssue false

Effects of intraruminal sodium chloride infusion on rumen and renal nitrogen and electrolyte dynamics in sheep

Published online by Cambridge University Press:  09 March 2007

Ian R. Godwin
Affiliation:
Department of Physiology, University of New England, Armidale, NSW 2351, Australia
Vernon J. Williams
Affiliation:
Department of Physiology, University of New England, Armidale, NSW 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Sheep were given 800 g low-protein roughage/d at 2 h intervals and infused intraruminally with 0, 500, 750, 1000, 1250, 1500 or 2000 mmol sodium chloride/d in 436 ml water. The digestibility of various food fractions and rumen ammonia, volatile fatty acids (VFA) and liquid turnover rate were measured, along with renal haemodynamics and the renal excretory patterns of nitrogen and electrolytes. Ad lib. food intake was determined during the infusion of 0 and 2000 mmol NaCl/d.

2. Infusion of NaCl up to 750 mmol/d had virtually no effect on the indices measured, except water intake and water excretion. Infusion of greater amounts caused a step-wise decrease in the digestibility of organic matter (OM) and N. Rumen liquid turnover rate was increased substantially and rumen NH2, and VFA concentrations were decreased. Ad lib. food intake was not different when either 0 or 2000 mmol NaCl/d were infused into the rumen.

3. The glomerular filtration rate and effective renal plasma flow (ERPF) were substantially increased after the infusion of 1250 mmol or more NaCl/d. Extracellular fluid volume was also increased. The renal excretion of urea and uric acid+allantoin (URAL) were decreased at the higher infusion rates but the fractional excretions of both these substances were enhanced. The excretion of sodium, chloride, calcium and magnesium were markedly increased with increasing salt infusion.

4. The results suggest that high NaCl inputs into the rumen increase the rumen turnover rate, which in turn decreases the digestibility of OM, particularly N. This causes lower rumen NH3, and VFA concentrations. Plasma urea and URAL concentrations are also decreased and this causes lower renal excretion of these substances despite a much higher fractional excretion resulting from the greatly enhanced urine flow rate.

5. When roughages low in N are given, NaCl intake should be kept below 20 mmol/kg body-weight per d to prevent a decline in the digestibility of the food and any consequent reduction in protein available to the sheep.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal, Slough: Commonwealth Agricultural Bureaux.Google Scholar
Antoniewicz, A. M., Heinemunn, W. W. & Hanks, E. M. (1980). Journal of Agricultural Science, Cambridge 95, 395400.CrossRefGoogle Scholar
Bacon, J. S. D. & Bell, D. J. (1948). Biochemical Journal 42, 397405.CrossRefGoogle Scholar
Balch, C. C. & Campling, R. C. (1962). Nutrition Abstracts and Reviews 32, 669686.Google Scholar
Bennink, M. R., Tyler, T. R., Ward, G. M. & Johnson, D. E. (1978). Journal of Dairy Science 61, 315323.CrossRefGoogle Scholar
Bergen, W. G. (1972). Journal of Animal Science 34, 10541060.CrossRefGoogle Scholar
Bondi, A. (1981). Nutrition Reports International 35, 9931004.Google Scholar
Borle, A. B. (1982). Journal of Membrane Biology 66, 183191.CrossRefGoogle Scholar
Breslau, N. A., McGuire, J. L., Zerwekh, J. E. & Pak, C. Y. C. (1982). Journal of Clinical Endocrinology and Metabolism 55, 369373.CrossRefGoogle Scholar
Breslau, N. A. & Pak, C. Y. C. (1983). Journal of Urology 129, 531532.CrossRefGoogle Scholar
Brook, A. H., Waites, G. M. H. & Stacy, B. D. (1964). Quarterly Journal of Experimental Physiology 49, 297300.CrossRefGoogle Scholar
Care, A. D., Farrer, A. R. & Pickard, D. W. (1981). Journal of Physiology London 325, 55P56P.Google Scholar
Chesley, L. C., Holm, L. W., Parker, H. R. & Assali, N. S. (1978). Proceedings of the Society of Experimental Biology and Medicine 159, 386389.CrossRefGoogle Scholar
Christopherson, R. J. & Kennedy, P. M. (1983). Canadian Journal of Animal Science 63, 477496.CrossRefGoogle Scholar
Clark, R. C., French, T. J., Beal, A. M., Cross, R. B. & Budtz-Olsen, O. E. (1975). Quarterly Journal of Experimental Physiology 60, 95106.CrossRefGoogle Scholar
Cresser, M. S. & Parsons, J. W. (1979). Analytica Chimica Acta 199, 431436.CrossRefGoogle Scholar
Croom, W. J., Harvey, R. W., Linnend, A. C. & Froetschel, M. (1982). Canadian Journal of Animal Science 62, 217227.CrossRefGoogle Scholar
Dirks, J. H., Seely, J. F. & Levy, M. (1976). In The Kidney, pp. 495552 [Brennen, B. M. and Rector, R. C., editors]. Philadelphia: Saunders.Google Scholar
Dixon, R. M. & Milligan, L. P. (1983). Canadian Journal of Animal Science 63, 149154.CrossRefGoogle Scholar
Ergene, N. (1976). Studies on urea excretion in sheep. PhD Thesis, University of Liverpool.Google Scholar
Ergene, N. & Pickering, E. C. (1978). Quarterly Journal of Experimental Physiology 63, 6776.CrossRefGoogle Scholar
Faichney, G. J. (1968). Australian Journal of Agricultural Research 19, 813819.CrossRefGoogle Scholar
Faichney, G. J. (1975). In Digestion and Metabolism in the Ruminant, pp. 277291 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Godwin, I. R. & Williams, V. J. (1982). Australian Journal of Agricultural Research 33, 843855.CrossRefGoogle Scholar
Godwin, I. R. & Williams, V. J. (1983). Proceedings of the Nutrition Society of Australia 8, 190.Google Scholar
Godwin, I. R. & Williams, V. J. (1984). Quarterly Journal of Experimental Physiology 69, 4959.CrossRefGoogle Scholar
Goulding, A. & Campbell, D. (1983). Journal of Nutrition 113, 14091414.CrossRefGoogle Scholar
Grovum, W. L. & Williams, V. J. (1977). British Journal of Nutrition 38, 425436.CrossRefGoogle Scholar
Haberle, D. A. & Davis, J. M. (1982). Klinische Wochenschrift 60, 12451248.CrossRefGoogle Scholar
Hamilton, J. A., Burton, M. A. & Webster, M. E. D. (1983). Proceedings of the XXIX Congress of the International Union of Physiological SciencesSydney, Australia, vol. 15, 407.Google Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1975). Journal of Agricultural Science, Cambridge 85, 93101.CrossRefGoogle Scholar
Hemsley, J. A. (1975). Australian Journal of Agricultural Research 26, 709714.CrossRefGoogle Scholar
Hemsley, J. A., Hogan, J. P. & Weston, R. H. (1975). Australian Journal of Agricultural Research 26, 715727.CrossRefGoogle Scholar
Houpt, T. R. & Houpt, K. A. (1968). American Journal of Physiology 214, 12961303.CrossRefGoogle Scholar
Jackson, H. M., Kromann, R. P. & Ray, E. E. (1971). Journal of Animal Science 33, 872877.CrossRefGoogle Scholar
Kato, S., Sasaki, Y. & Tsuda, T. (1979). Annales Recherche Veterinaire 10, 229230.Google Scholar
Kennedy, P. M. & Milligan, L. P. (1980). Canadian Journal of Animal Sciences 60, 205221.CrossRefGoogle Scholar
Kissileff, H. R. & Van Itallie, T. B. (1982). Annual Review of Nutrition 2, 371418.CrossRefGoogle Scholar
Knox, F. G. & Haas, J. A. (1982). Reviews of Physiology, Biochemistry & Pharmacology 92, 75113.CrossRefGoogle Scholar
Macfarlane, W. V. (1976). In Veterinary Physiology, pp. 461–539 [Phillis, J. W., editor]. Bristol: Wright-Scientechnica.Google Scholar
McIntosh, G. H., Filsell, O. H. & Jarrett, I. G. (1973). Australian Journal of Biological Sciences 26, 13891394.CrossRefGoogle Scholar
Martin, D. L. & De Luca, H. F. (1969). American Journal of Physiology 216, 1351–1359.CrossRefGoogle Scholar
Massry, S. G., Coburn, J. W., Chapman, L. W. & Kleeman, C. R. (1967). American Journal of Physiology 213, 12181224.CrossRefGoogle Scholar
Massry, S. G., Coburn, J. W., Chapman, L. W. & Kleeman, C. R. (1968). American Journal of Physiology 214, 14031409.CrossRefGoogle Scholar
Nicol, G. R. & Corbett, J. L. (1971). Laboratory Practice 20, 727728.Google Scholar
Phillipson, A. T. & Storry, J. E. (1965). Journal of Physiology, London 181, 130150.CrossRefGoogle Scholar
Potter, B. J. (1961). Australian Journal of Agricultural Research 12, 440445.CrossRefGoogle Scholar
Potter, B. J. (1972). Australian Journal of Experimental Biology and Medical Science 50, 387389.CrossRefGoogle Scholar
Poulsen, H. L., Jensen, H. E. & Parving, H. (1977). Scandinavian Journal of Clinical & Laboratory Investigation 37, 691696.CrossRefGoogle Scholar
Rabinowitz, L., Wegienke, E. A., Gunther, R. A. & Warren, D. T. (1971). Nephron 8, 313316.CrossRefGoogle Scholar
Rogers, J. A., Marks, B. C., Davis, C. L. & Clark, J. H. (1979). Journal of Dairy Science 62, 15991605.CrossRefGoogle Scholar
Rys, R., Antoniewicz, A. & Maciejewicz, J. (1975). Tracer Studies on Non-protein Nitrogen for Ruminants, vol. 2, pp. 9598. Vienna: International Atomic Energy Agency.Google Scholar
Smith, H. W., Finkelstein, L., Aliminosa, B., Crawford, B. & Craber, M. (1945). Journal of Clinical Investigation 24, 388404.CrossRefGoogle Scholar
Somers, M. (1961). Australian Journal of Experimental Biology and Medical Science 39, 111122.CrossRefGoogle Scholar
Suttle, N. F. & Field, A. C. (1967). British Journal of Nutrition 21, 819831.CrossRefGoogle Scholar
Tang-Liu, D. D.-S., Tozer, T. N. & Riegelman, S. (1983). Journal of Pharmaceutical Sciences 72, 154158.CrossRefGoogle Scholar
Ternouth, J. H. (1968). Proceedings of the Australian Society of Animal Production 7, 369375.Google Scholar
Thomson, D. J., Beever, D. E., Latham, M. J., Sharpe, M. E. & Terry, R. A. (1978). Journal of Agricultural Science, Cambridge 91, 17.CrossRefGoogle Scholar
Timet, D., Emanovic, D., Herak, M., Kraljevic, P. & Mitin, V. (1978). Veterinarski Arkiv 48, S37S38.Google Scholar
Tomas, F. M. (1974). Australian Journal of Agricultural Research 25, 485493.CrossRefGoogle Scholar
Tomas, F. M. & Potter, B. J. (1975). Australian Journal of Agricultural Research 26, 585598.CrossRefGoogle Scholar
Tomas, F. M. & Potter, B. J. (1976). British Journal of Nutrition 36, 3745.CrossRefGoogle Scholar
Valtonen, M. (1979). Journal of the Scientific Agricultural Society of Finland 51, 381419.Google Scholar
Valtonen, M. & Eriksson, L. (1977). Acta Physiologica Scandinavica 100, 340346.CrossRefGoogle Scholar
Wallace, R. J. (1979). Journal of Applied Bacteriology 47, 443455.CrossRefGoogle Scholar
Watson, R. H. (1933). Australian Journal of Experimental Biology 11, 197207.CrossRefGoogle Scholar
Wilson, A. D. (1966 a). Australian Journal of Agricultural Research 17, 155163.CrossRefGoogle Scholar
Wilson, A. D. (1966 b). Australian Journal of Agricultural Research 17, 503514.CrossRefGoogle Scholar
Yousri, R. M., Abou Akkada, A. R. & Abou Raya, A. K. (1977). World Review of Animal Production 13, 5156.Google Scholar