Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T08:27:33.799Z Has data issue: false hasContentIssue false

Effects of dietary polychlorinated biphenyls on cholesterol catabolism in rats

Published online by Cambridge University Press:  09 March 2007

Satoshi Nagaoka
Affiliation:
Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Nagoya 464, Japan
Hitoshi Miyazaki
Affiliation:
Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Nagoya 464, Japan
Yoritaka Aoyama
Affiliation:
Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Nagoya 464, Japan
Akira Yoshida
Affiliation:
Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Nagoya 464, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dietary polychlorinated biphenyls (PCBs) caused hypercholesterolaemia in rats. The concentration and output of biliary cholesterol was significantly lower than that of the control group. Biliary output of total bile acids was significantly decreased in rats given the PCB-supplemented diet. Faecal excretion of total steroids (sum of neutral steroids and acidic steroids) was not significantly changed in rats given the PCB-supplemented diet. The present results indicate that dietary PCBs cause hypercholesterolaemia without modifying the faecal total steroids excretion. These results suggest that PCBs produce hyper-cholesterolaemia accompanied by changes in biliary or faecal excretion of bile acids and neutral steroids in addition to an increase in hepatic cholesterol synthesis.

Type
Cholesterol Metabolism
Copyright
Copyright © The Nutrition Society 1990

References

Bartlett, G. R. (1959). Phosphorous assay in column chromatogrphy. Journal of Biological Chemistry 234, 466468.CrossRefGoogle Scholar
Bastomsky, C. H. (1974). Effects of polychlorinated biphenyl mixture (Aroclor 1254) and DDT on biliary thyroxine excretion in rats. Endocrinology 95, 11501155.CrossRefGoogle ScholarPubMed
Bruusgaard, A., Sorensen, H., Gilhuus-Moe, C. C. & Skalhegg, B. A. (1977). Bile acid determination with different preparations of 3α-hydroxysteroid dehydrogenase. Clinica Chimica Acta 77, 387395.CrossRefGoogle Scholar
Choe, S. Y., Kim, H. M. & Yang, K. H. (1984). Effects of butylated hydroxytoluene (BHT) on biliary excretion of xenobiotics and bile flow in rats. Drug and Chemical Toxicology 7, 149165.CrossRefGoogle ScholarPubMed
Folch, J., Lee, M. & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipid from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Frantz, I. D. Jr, Schneider, H. S. & Hinkelman, B. T. (1954). Suppression of hepatic cholesterol synthesis in the rat by cholesterol feeding. Journal of Biological Chemistry 206, 465469.CrossRefGoogle ScholarPubMed
Ginter, E., Cerven, J., Nemec, R. & Mikus, L. (1971). Lowered cholesterol catabolism in guinea pigs with chronic ascorbic acid deficiency. American Journal of Clinical Nutrition 24, 12381245.CrossRefGoogle ScholarPubMed
Harper, A. E. (1959). Amino acid balance and imbalance. I. Dietary level of protein and amino acid imbalance. Journal of Nutrition 68, 405418.CrossRefGoogle ScholarPubMed
Harry, D. S., Dini, M. & McIntyre, N. (1973). Effect of cholesterol feeding and biliary obstruction on hepatic cholesterol biosynthesis in the rat. Biochimica et Biophysica Acta 296, 209220.CrossRefGoogle ScholarPubMed
Heaton, K. W., Heaton, S. T. & Barry, R. E. (1971). An in vivo comparison of two bile salt binding agents, cholestyramine and lignin. Scandinavian Journal of Gastroenterology 6, 281286.CrossRefGoogle Scholar
Holloway, D. E. & Rivers, J. M. (1981). Influence of chronic ascorbic acid deficiency and excessive ascorbic acid intake on bile acid metabolism and bile composition in the guinea pig. Journal of Nutrition 111, 412424.CrossRefGoogle ScholarPubMed
Ishikawa, T. T., McNeely, S., Steiner, P. M., Glueck, C. J., Milles, M., Gartside, P. S. & McMillin, C. (1978). Effect of chlorinated hydrocarbons on plasma α-lipoprotein cholesterol in rats. Metabolism 27, 8996.CrossRefGoogle ScholarPubMed
Karaboyas, G. C. & Koritz, S. B. (1965). Identity of the site of action of 3',5'-adenosine monophosphate and adrenocorticotropic hormone in corticosteroidogenesis in rat adrenal and beef adrenal cortex slices. Biochemistry 4, 462468.CrossRefGoogle Scholar
Kato, N. & Yoshida, A. (1980). Effect of dietary PCB on hepatic cholesterogenesis in rats. Nutrition Reports International 21, 107112.Google Scholar
Kato, N. & Yoshida, A. (1981). Effect of various dietary xenobiotics on serum total cholesterol and high density lipoprotein cholesterol in rats. Nutrition Reports International 23, 825831.Google Scholar
Klassen, C. D. (1971). Studies on the increased biliary flow produced by phenobarbital in rats. Journal of Pharmacological and Experimental Therapeutics 176, 743751.Google Scholar
Klassen, C. D. & Watkins, J. B. (1984). Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacological Review 36, 167.Google Scholar
Malchøw-Møller, A., Arffmann, S., Larusso, N. F. & Krag, E. (1982). Enzymatic determination of total 3α-hydroxy bile acids in faeces. Scandinavian Journal of Gastroenterology 17, 331333.CrossRefGoogle Scholar
Miettinen, T. A., Ahrens, E. H. Jr & Grundy, S. M. (1965). Quantitative isolation and gas-liquid chromatographic analysis of total dietary and fecal neutral steroids. Journal of Lipid Research 6, 411424.CrossRefGoogle ScholarPubMed
Miller, N. E. & Nestel, P. J. (1973). Altered bile acid metabolism during treatment with phenobarbitone. Clinical Science and Molecular Medicine 45, 257262.Google ScholarPubMed
Nagaoka, S., Kato, M., Aoyama, Y. & Yoshida, A. (1986 a). Comparative studies on the hypercholesterolaemia induced by excess dietary tyrosine or polychlorinated biphenyls in rats. British Journal of Nutrition 56, 509517.CrossRefGoogle ScholarPubMed
Nagaoka, S., Masaki, H., Aoyama, Y. & Yoshida, A. (1986 b). Effects of excess dietary tyrosine or certain xenobiotics on the cholesterogenesis in rats. Journal of Nutrition 116, 726732.CrossRefGoogle ScholarPubMed
Nagata, Y., Tanaka, K. & Sugano, M. (1981). Further studies on the hypocholesterolaemic effect of soya-bean protein in rats. British Journal of Nutrition 45, 233241.CrossRefGoogle ScholarPubMed
O'Brien, B. C. & Reiser, R. (1982). Cholesterolemic response of rats to human-type diet ingredients. Journal of Nutrition 112, 14901497.CrossRefGoogle ScholarPubMed
Okuyama, S., Kokubun, N., Higashidate, S., Uemura, D. & Hirata, Y. (1979). A new analytical method of individual bile acids using high performance liquid chromatography and immobilized 3α-hydroxysteroid dehydrogenase in column form. Chemical Letters 14431446.CrossRefGoogle Scholar
Pearson, S., Stern, S. & McGavack, T. H. (1953). A rapid, accurate method for determination of total cholesterol in serum. Analytical Chemistry 25, 813814.CrossRefGoogle Scholar
Quazi, S., Yokogoshi, H. & Yoshida, A. (1983). Effect of dietary fiber on hypercholesterolemia induced by dietary PCB or cholesterol in rats. Journal of Nutrition 113, 11091118.CrossRefGoogle ScholarPubMed
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods (Japanese ed.: Iwanami Pub. Inc., Tokyo). Ames, Iowa: Iowa State University Press.Google Scholar
Takeuchi, N., Ito, M., Uchida, K. & Yamamura, Y. (1975). Effect of modification of thyroid function on cholesterol 7α-hydroxylation in rat liver. Biochemical Journal 148, 499503.CrossRefGoogle Scholar
Tanaka, K., Aso, B. & Sugano, M. (1984). Biliary steroids excretion in rats fed soybean protein and casein or their amino acid mixtures. Journal of Nutrition 114, 2632.CrossRefGoogle ScholarPubMed
Uchida, K., Nomura, Y., Kadowaki, M., Takase, H., Takano, K. & Takeuchi, N. (1978). Age-related changes in cholesterol and bile acid metabolism in rats. Journal of Lipid Research 19, 544552.CrossRefGoogle ScholarPubMed
Van Cantfort, J., Renson, J. & Gielen, J. (1975). Rat-liver cholesterol 7α-hydroxylase. European Journal of Biochemistry 55, 2331.CrossRefGoogle Scholar
Wahlefeld, A. W. (1974). Determination after enzymatic hydrolysis. In Methods of Enzymatic Analysis, vol. 4, pp. 18311935 [Bergmeyer, H. U., editor]. New York: Academic Press.Google Scholar
Waxman, D. J. (1986). Rat hepatic cholesterol 7α-hydroxylase: biochemical properties and comparison to constitutive and xenobiotic-inducible cytochrome P-450 enzymes. Archives of Biochemistry and Biophysics 247, 335345.CrossRefGoogle ScholarPubMed
Yoshimura, H., Yamamoto, H. & Kinoshita, H. (1974). Metabolic studies on polychlorinated biphenyls. V. Biliary excretion of 5-hydroxy-2, 4, 3',4'-tetrachlorobiphenyl, a major metabolite of 2, 4, 3',4'-tetrachloro-biphenyl. Fukuoka Acta Medicine 65, 1216.Google Scholar
Zilversmit, D. B. & Davis, A. K. (1950). Microdetermination of plasma phospholipid by trichloroacetic acid precipitation. Journal of Laboratory and Clinical Medicine 35, 155160.Google ScholarPubMed