Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T23:41:58.705Z Has data issue: false hasContentIssue false

Effects of dietary molybdenum and sulphur on the distribution of copper in plasma and kidneys of sheep

Published online by Cambridge University Press:  24 July 2007

I. Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
B. W. Young
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A 30-week study has been made in growing ewe lambs of the effects of dietary supplementation with molybdenum, or Mo plus inorganic sulphate on the distribution of copper in their blood plasma and kidneys.

2. The addition of 25 mg Mo and 5 g SO42-/kg diet increased Cu concentrations in plasma and kidney and decreased those in liver. Plasma caeruloplasmin activities (ferroxidase; EC 1.16.3.1) were unaffected.

3. Subcellular fractionation of the kidney cortex and gel filtration of the plasma and kidney cortex cytosol showed that the increased Cu content of these tissues was associated with abnormalities in the distribution of Cu. It appeared that both Cu and Mo were associated with the same proteins.

4. Dietary supplementation with Mo alone (25 mg/kg) had no effect on plasma or kidney Cu concentrations, suggesting that S metabolism is involved in the formation of the abnormal Cu-binding proteins in plasma and kidney.

5. The results are discussed in relation to the induction of Mo-induced Cu-deficiency states and the possible involvement of thiomolybdates.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

REFERENCES

Andrews, P. (1965). Biochem. J. 96, 595.CrossRefGoogle Scholar
Bingley, J. B. (1959). J. agric. Fd Chem. 7, 269.CrossRefGoogle Scholar
Bradfield, E. G. & Strickland, J. F. (1975). Analyst, Lond. 100, 1.CrossRefGoogle Scholar
Bremner, I. (1976). Proc. Nutr. Soc. 35, 21A.Google Scholar
Bremner, I., Hoekstra, W. G., Davies, N. T. & Williams, R. B. (1977). In Trace Element Metabolism in Man and Animals, Vol. 3. (In the Press.)Google Scholar
Bremner, I. & Marshall, R. B. (1974). Br. J. Nutr. 32, 283.CrossRefGoogle Scholar
Bremner, I., Young, B. W. & Mills, C. F. (1976). Br. J. Nutr. 36, 551.CrossRefGoogle Scholar
Davis, B. J. (1964). Ann. N.Y. Acad. Sci. 121, 404.CrossRefGoogle Scholar
De Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. & Appelmans, F. (1955). Biochem. J. 60, 604.CrossRefGoogle Scholar
Dick, A. T. (1956). In Inorganic Nitrogen Metabolism, p. 445 [McElroy, W. D., Glass, B., editors]. Baltimore, Maryland: Johns Hopkins Press.Google Scholar
Dick, A. T., Dewey, D. W. & Gawthorne, J. M. (1975). J. agric. Sci., Camb. 85, 567.CrossRefGoogle Scholar
Dowdy, R. P. & Matrone, G. (1968). J. Nutr. 95, 191.CrossRefGoogle Scholar
El-Gallad, T. T., Bremner, I. & Mills, C. F. (1977). Proc. Nutr. Soc. 36, 105A.Google Scholar
Gaballah, S., Abood, L. G., Kapsalis, A. & Sturdivant, D. (1965). Proc. Soc. exp. Biol. Med. 119, 625.CrossRefGoogle Scholar
Gubler, C. J., Lahey, M. E., Cartwright, G. E. & Wintrobe, M. M. (1953). J. clin. Invest. 32, 405.CrossRefGoogle Scholar
Marcilese, N. A., Ammerman, C. B., Valsecchi, R. M., Dunavant, B. G. & Davis, G. K. (1969). J. Nutr. 99, 177.CrossRefGoogle Scholar
Marcilese, N. A., Ammerman, C. B., Valsecchi, R. M., Dunavant, B. G. & Davis, G. K. (1970). J. Nutr. 100, 1399.CrossRefGoogle Scholar
Mills, C. F., Bremner, I., El-Gallad, T. T., Dalgarno, A. C. & Young, B. W. (1977). In Trace Element Metabolism in Man and Animals, Vol. 3. (In the Press.)Google Scholar
Mills, C. F. & Mitchell, R. L. (1971). Br. J. Nutr. 26, 117.CrossRefGoogle Scholar
Rice, E. W. (1962). Analyt. Biochem. 3, 452.CrossRefGoogle Scholar
Scaife, J. F. (1956). N.Z. Jl Sci. Technol. 38, 293.Google Scholar
Smith, B. S. W., Field, A. C. & Suttle, N. F. (1968). J. comp. Path. Ther. 78, 449.CrossRefGoogle Scholar
Smith, B. S. W. & Wright, H. (1974). Clinica chim. Acta 50, 359.CrossRefGoogle Scholar
Smith, B. S. W. & Wright, H. (1975 a). J. comp. Path. Ther. 85, 299.CrossRefGoogle Scholar
Smith, B. S. W. & Wright, H. (1975 b). Clinica chim. Acta 62, 55.CrossRefGoogle Scholar
Suttle, N. F. (1974). Proc. Nutr. Soc. 33, 299.CrossRefGoogle Scholar
Suttle, N. F. (1975). Br. J. Nutr. 34, 411.CrossRefGoogle Scholar
Suttle, N. F. & Field, A. C. (1968). J. comp. Path. Ther. 78, 351.CrossRefGoogle Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition, 3rd ed.New York: Academic Press.Google Scholar
Van Reen, R. & Williams, M. A. (1956). Archs Biochem. Biophys. 63, 1.CrossRefGoogle Scholar
Wynne, K. N. & McClymont, G. L. (1956). Aust. J. agric. Res. 7, 45.CrossRefGoogle Scholar