Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T01:04:19.191Z Has data issue: false hasContentIssue false

Effects of dietary cis and trans unsaturated and saturated fatty acids on the glucose metabolites and enzymes of rats

Published online by Cambridge University Press:  08 March 2007

Claudio A. Bernal*
Affiliation:
Cátedra Bromatologí y Nutrición, Facultad de Bioquymíca y Ciencias Biolóngicas, Universidad Nacional del Litoral, Santa Fe, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
Jordi Rovira
Affiliation:
Departamento de Ciencias Fisiolóngicas I, Facultad de Medicina, Universidad de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
Maryé E. Colandré
Affiliation:
Cátedra Bromatologí y Nutrición, Facultad de Bioquymíca y Ciencias Biolóngicas, Universidad Nacional del Litoral, Santa Fe, Argentina
Roser Cussó
Affiliation:
Departamento de Ciencias Fisiolóngicas I, Facultad de Medicina, Universidad de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
Joan A. Cadefau
Affiliation:
Departamento de Ciencias Fisiolóngicas I, Facultad de Medicina, Universidad de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
*
*Corresponding author: Professor Claudio Bernal, fax +54 342 4575221, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of the present study was to examine whether the level of dietary cis fatty acid (c FA), or the isomers (trans or cis) and/or the saturation of the fatty acids at high dietary fat levels altered the intracellular glucose metabolites and certain regulatory enzyme activities in the skeletal muscle and liver of rats. The animals were fed for 30 d on either a recommended control diet (7% c FA, w/w) or a high-fat diet (20% fatty acids, w/w). The high-fat diet was enriched with either c FA, trans fatty acid (t FA), a moderate proportion of saturated fatty acid (MSFA), or a high proportion of saturated fatty acid (HSFA). The most striking findings were observed in the gastrocnemius muscle with a HSFA diet. There was a significant increase in glucose-6-phosphate (306 %), glucose-1-phosphate (245 %), fructose-6-phosphate (400 %), fructose-1,6-bisphosphate (86 %), glyceraldehyde- 3-phosphate (38 %), pyruvate (341 %), lactate (325 %), citrate (79 %) and the bisphosphorylated sugars as compared with the cFA diet. These changes were paralleled by an increase in muscle triacylglycerol content (49 %) and a decrease in glucose (39 %). In addition, the amount of cFA and the other types of fatty acid (i.e. t FA and MSFA) led to no great differences in glucose metabolism as compared with the respective control group. These data support the hypothesis that glucose changes induced by a HSFA diet are a multifaceted abnormality. Glucose and lactate transport and intracellular glucose metabolism could be the key biochemical defects involved in this detrimental effect on glucose metabolism.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Adamo, KB, Graham, TE, Comparison of traditional measurements with macroglycogen and proglycogen analysis of muscle glycogen. J Appl Physiol 1998 84 908913.CrossRefGoogle ScholarPubMed
Alsaif, MA, Duwaihy, MMS, Influence of dietary fat quantity and composition on glucose and insulin sensitivity in rats. Nutr Res 2004 24 417425.CrossRefGoogle Scholar
Alstrup, KK, Gregersen, S, Jensen, HM, Thomsen, JL, Hermansen, K, Differential effects of cis and trans fatty acids on insulin release from isolated mouse islets. Metabolism 1999 48 2229.Google ScholarPubMed
Andrés, V, Carreras, J, Cussó, R, Regulation of muscle phosphofructokinase by physiological concentrations of bisphosphorylated hexoses: effect of alkalinization. Biochem Biophys Res Comm 1990 172 328334.CrossRefGoogle ScholarPubMed
Aro, A, Jauhiainen, M, Partanen, R, Salminen, I, Mutanen, M, Stearic acid, trans fatty acids, and dairy fat: effects on serum and lipoprotein lipids, apolipoproteins, lipoprotein(a), and lipid transfer proteins in healthy subjects. Am J Clin Nutr 1997 65 14191426.CrossRefGoogle ScholarPubMed
Ascherio, A, Katan, MB, Zock, PL, Stampfer, MJ, Willet, WC\ Trans fatty acids and coronary heart disease. N Engl J Med 1999 340 19941998.CrossRefGoogle ScholarPubMed
Bass, A, Brdiczk, D, Eyer, P, Hofer, S, Pette, D, Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur J Biochem 1969 10 198206.CrossRefGoogle ScholarPubMed
Cadefau, J, Casademont, J, Grau, JM, Fernández, J, Balaguer, A, Vernet, M, Cussó, R, Urbano-Márquez, A, Biochemical and histochemical adaptation to sprint training in young athletes. Acta Physiol Scand 1990 140 341351.CrossRefGoogle ScholarPubMed
Clevidence, BA, Judd, JT, Schaefer, EJ, Jenner, JL, Lichtenstein, AH, Muesing, RA, Wittes, J, Sunkin, ME, Plasma lipoprotein (a) levels in men and women consuming diets enriched in saturated, cis-, or trans-monounsaturated fatty acids. Arterioscler Thromb Vasc Biol 1997 17 16571661.CrossRefGoogle ScholarPubMed
Colandré, ME, Diez, RS, Bernal, CA, Metabolic effects of trans fatty acids on an experimental dietary model. Br J Nutr 2003 89 631638.CrossRefGoogle Scholar
Cromer, KD, Jenkins, TC, Thies, EJ, Replacing cis octadecenoic acid with trans isomers in media containing rat adipocytes stimulates lipolysis and inhibits glucose utilization. J Nutr 1995 125 23942399.CrossRefGoogle ScholarPubMed
Grundy, SM, Abate, N, Chandalia, M, Diet composition and the metabolic syndrome: what is the optimal fat intake?. Am J Med 2002 113 S25S29.CrossRefGoogle ScholarPubMed
Institute of Laboratory Animal Resources, Commission on Life Sciences & National Research Council Guide to the Care and Use of Experimental Animals of the Laboratory Washington, DC:National Academy Press 1996.Google Scholar
Judd, JT, Clevidence, BA, Muesing, RA, Wittes, J, Sunkin, ME, Podczasy, JJ, Dietary trans fatty acids: effects on plasma lipids and lipoproteins of healthy men and women. Am J Clin Nutr 1994 59 861868.CrossRefGoogle ScholarPubMed
Kahn, BB, Pedersen, O, Suppression of GLUT 4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology 1993 132 1322.CrossRefGoogle ScholarPubMed
Kim, JK, Wi, JK, Youn, JH, Metabolic impairment precedes insulin resistance in skeletal muscle during high-fat feeding in rats. Diabetes 1996 651 651658.CrossRefGoogle Scholar
Kim, JY, Nolte, LA, Hansen, PA, Han, D, Ferguson, K, Thompson, PA, Holloszy, JO, High-fat diet-induced muscle insulin resistance:relationship to visceral fat mass. Am J Physiol 2000 279 R2057R2065.Google ScholarPubMed
Laurell, S, A method for routine determination of plasma triglycerides. Scand J Clin Lab Invest 1966 18 668672.CrossRefGoogle ScholarPubMed
Lichtenstein, AH, Kennedy, E, Barrier, P, Danford, D, Ernst, ND, Grundy, SM, Leveille, GA, Van Horn, L, Williams, CL, Booth, SL, Dietary fat consumption and health. Nutr Rev 1998 56 S3S28.CrossRefGoogle ScholarPubMed
Lichtenstein, AH, Schwab, US, Relationship of dietary fat to glucose metabolism. Atherosclerosis 2000 150 227243.CrossRefGoogle ScholarPubMed
Louheranta, AM, Turpeinen, AK, Vidgren, HM, Schwab, US, Uusitupa, MU, 1999) A high-trans fatty acid diet and insulin sensitivity in young healthy women. Metabolism 1999 48 870875.CrossRefGoogle ScholarPubMed
Lowry, OH, Passonneau, JV, A Flexible System of Enzymatic Analysis New York: Academic 1972Google Scholar
Maggs, DG, Jacob, R, Rife, F, Lange, R, Leone, P, During, MJ, Tamborlane, WV, Sherwin, RS, Interstitial fluid concentrations of glycerol, glucose and amino acids in human quadriceps muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle. J Clin Invest 1995 96 370377.CrossRefGoogle Scholar
Mohan, IK, Das, UN, Prevention of chemically induced diabetes mellitus in experimental animals by polyunsaturated fatty acids. Nutrition 2001 17 126151.CrossRefGoogle Scholar
Montell, E, Turini, M, Marotta, M, Roberts, M, Noé, V, Ciudad, C, Macé, K, Gomez-Foix, AM, DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. Am J Physiol 2001 280 E229E237.Google ScholarPubMed
Oakes, ND, Cooney, GJ, Camilleri, S, Chisholm, DJ, Kraegen, EW, Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes 1997 46 17681774.CrossRefGoogle ScholarPubMed
Passonneau, JV, Lowry, OH, Schulz, DW, Brown, JG, Glucose 1,6 diphosphate formation by phosphoglucomutase in mammalian tissues. J Biol Chem 1969 244 902909.CrossRefGoogle ScholarPubMed
Pehleman, TL, Peters, SJ, Heigenhauser, GJ, Spiet, LL, Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet. J Appl Physiol 2005 98 100107.CrossRefGoogle ScholarPubMed
Py, G, Eydoux, N, Perez-Martin, A, Raynaud, E, Brun, JF, Préfaut, C, Mercier, J, Streptozotocin-induced diabetes decreases rat sarcolemmal lactate transport. Metabolism 2001 50 418424.CrossRefGoogle ScholarPubMed
Randle, PJ, Garland, PB, Hales, CN, Newsholme, EA, The glucose fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963 1 785794.CrossRefGoogle ScholarPubMed
Riccardi, G, Giacco, R, Rivellese, AA, Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 2004 23 447456.CrossRefGoogle ScholarPubMed
Reeves, PG, Nielsen, FH, Fahey, GC, AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993 123 19391951.CrossRefGoogle Scholar
Sabina, RL, Swain, JL, Bradley, WG, Holnes, CW, Quantifi-cation of metabolites in human skeletal muscle during rest and exercise. A comparison of methods. Muscle Nerve 1984 7 7782.CrossRefGoogle Scholar
Storlien, LH, James, DE, Burleigh, KM, Chisholm, DJ, Kraegen, EW, Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in the rat. Am J Physiol 1986 251 E576E583.Google Scholar
Storlien, LH, Jenkins, AB, Chisholm, DJ, Pascoe, WS, Khouri, S, Kraegen, EW, Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and v-3 fatty acids in muscle phospholipid. Diabetes 1991 40 280289.CrossRefGoogle Scholar
Storlien, LH, Kriketos, AD, Jenkins, AB, Baur, LA, Pan, DA, Tapsell, LC, Calvert, GD, Does dietary fat influence insulin action?. Ann N Y Acad Sci 1997 827 287301.CrossRefGoogle ScholarPubMed
Storlien, LH, Pan, DA, Kriketos, AD, O'Connor, J, Caterson, ID, Cooney, GJ, Jenkins, AB, Baur, LA, Skeletal muscle membrane lipids and insulin resistance. Lipids 1996 31 S261S265.CrossRefGoogle ScholarPubMed
Taouis, M, Dagou, C, Ster, C, Durand, G, Pinault, M, Delarue, J, n-3 Polyunsaturated fatty acids prevent the defect of insulin receptor signalling in muscle. Am J Physiol 2002 282 E664E671.Google ScholarPubMed
Uusitupa, M, Schwab, U, Mäkimattila, S, Karhapää, P, Sarkkinen, E, Maliranta, H, Agren, J, Penttilä, I, Effects of two high-fat diets with different fatty acid compositions on glucose and lipid metabolism in healthy young women. Am J Clin Nutr 1994 59 13101316.CrossRefGoogle ScholarPubMed
van Schaftingen, E, Lederer, E, Bartrons, R, Hers, HG, A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Eur J Biochem 1982 129 191195.CrossRefGoogle ScholarPubMed
Wang, Y, Miura, Y, Kaneko, T, Li, J, Qin, LQ, Wang, PY, Matsui, H, Sato, A, Glucose intolerance induced by a high-fat/lowcarbohydrate diet in rats. Effects of nonesterified fatty acids.. Endocrine 2002 17 185191.CrossRefGoogle Scholar
Yu, C, Chen, Y, Cline, GW, Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002 277 5023050236.CrossRefGoogle ScholarPubMed
Zock, PL, Katan, MB, Trans fatty acids, lipoproteins, and coronary risk. Can J Physiol Pharmacol 1997 75 211216.CrossRefGoogle ScholarPubMed