Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T04:14:34.980Z Has data issue: false hasContentIssue false

Effect of zinc injection on Zn binding in cytosols of several tissues of kids

Published online by Cambridge University Press:  13 April 2010

S. Tanabe
Affiliation:
Department of Nutrition, National Institute of Animal Industry, Tsukuba Norindanchi P.O. Box 5, Ibaraki 305, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. An experiment was conducted with goat kids to determine the effect of zinc injection on Zn binding in cytosols of several tissues of kids.

2. Following the Zn load, plasma Zn increased for 8 h then decreased. Zn injection significantly increased the Zn contents of the liver and kidney.

3. Injection of Zn into kids stimulated the production of Zn in a fraction with an apparent molecular weight of approximately 10000 in the cytosols of the liver, kidney and small intestinal mucosa. It is suggested that these fractions probably correspond to metallothioneins, Rumen papilla did not synthesize Zn-containing protein in response to an acute administration of Zn.

4. Zn injection significantly decreased the Cu content of the liver and affected the distribution of Cu in hepatic cytosol fraction, suggesting an interaction between these two elements.

5. The volume of bile collected in the gall bladder and its Zn content were markedly increased by Zn injection, suggesting that bile is one of the Zn excretion routes in kids.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Andrews, P. (1965). Biochem. J. 96, 595.CrossRefGoogle Scholar
Arora, S. P., Hatfield, E. E., Garrigus, U. S., Lohman, T. G. & Doane, B. B. (1969). J. Nutr. 97, 25.CrossRefGoogle Scholar
Bremner, I. & Davies, N. T. (1975). Biochem. J. 149,733.CrossRefGoogle Scholar
Bremner, I. & Marshall, R. B. (1974). Br. J. Nutr. 32, 283.CrossRefGoogle Scholar
Bremner, I., Young, B. W. & Mills, C. F. (1976), Br. J. Nutr. 36, 551.CrossRefGoogle Scholar
Chen, R. W., Vasey, E. J. & Whanger, P. D. (1977). J. Nutr. 107, 805.CrossRefGoogle Scholar
Evans, G. W., Myron, D. R., Cornatzer, N. F. & Cornatzer, W. E. (1970). Am. J. Physiol. 218, 298.CrossRefGoogle Scholar
Kincaid, R. L., Miller, W. J., Fowler, P. R., Gentry, R. P., Hampton, D. L. & Neathery, M. W. (1976). J. Dairy Sci. 59, 1580.CrossRefGoogle Scholar
Kincaid, R. L., Miller, W. J., Gentry, R. P., Neathery, M. W. & Hampton, D. L. (1976). J. Dairy Sci. 59, 552.CrossRefGoogle Scholar
Miller, W. J. (1969). Am. J. clin. Nutr. 22, 1323.CrossRefGoogle Scholar
Miller, W. J., Blackmon, D. M., Pitts, W. J. & Powell, G. W. (1967). J. Nutr. 92, 71.CrossRefGoogle Scholar
Miller, W. J., Martin, Y. G., Gentry, R. P. & Blackmon, D. M. (1968). J. Nutr. 94, 391.CrossRefGoogle Scholar
Mjor-Grimsrud, M., Sori, N. E. & Sivertsen, T. (1979). Acta Pharmacol. Toxicol. 44, 319.CrossRefGoogle Scholar
Neathery, M. W., Miller, W. J., Blackmon, D. M., Gentry, R. P. & Jones, J. B. (1973). J. Anim. Sci. 37,848.CrossRefGoogle Scholar
Nordberg, G. F., Nordberg, M., Piscator, M. & Vesterberg, O. (1972). Biochem. J. 126, 491.CrossRefGoogle Scholar
Pulido, P., Kagi, J. H. R. & Vallee, B. L. (1966). Biochemistry, N. Y. 5, 1768.CrossRefGoogle Scholar
Reitz, L. L., Smith, W. H., & Plumlee, M. P. (1960). Analyt. Chem. 32, 1728.CrossRefGoogle Scholar
Richards, M. P. & Cousins, R. J. (1975). Biochem. biophys. Res. Comm. 64, 1215.CrossRefGoogle Scholar
Richards, M. P. & Cousins, R. J. (1976). Proc. Soc. exp. Biol. Med. 153,52.CrossRefGoogle Scholar
Saylor, W. W. & Leach, R. M. Jr (1980). J. Nutr. 110, 448.CrossRefGoogle Scholar
Saylor, W. W., Morrow, F. D. & Leach, R. M. Jr (1980). J. Nutr. 110,460.CrossRefGoogle Scholar
Weser, U., Rupp, H., Donay, F., Linnerman, F.. Voelter, W., Voetsch, W. & Jung, G. (1973). Eur. J. Biochem. 39, 127.CrossRefGoogle Scholar