Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T18:38:42.908Z Has data issue: false hasContentIssue false

Effect of vitamin C on sorbitol in the lens of guinea-pigs made diabetic with streptozotocin

Published online by Cambridge University Press:  09 March 2007

C. J. Bates
Affiliation:
MRC Dunn Nutritional Laboratory, Milton Road, Cambridge CB4 1XJ
T. D. Cowen
Affiliation:
MRC Dunn Nutritional Laboratory, Milton Road, Cambridge CB4 1XJ
P. H. Evans
Affiliation:
MRC Dunn Nutritional Laboratory, Milton Road, Cambridge CB4 1XJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Marginally vitamin C-deficient guinea-pigs treated with the diabetogenic agent streptozotocin were compared with those liberally supplied with vitamin C, for functional indices of vitamin C status, particularly in the eye lens. Weanling male Dunkin–Hartley guinea-pigs were fed on diets with 0.1 g vitamin C/kg (marginally deficient), or 5 g/kg (liberally supplied), and some received intraperitoneal streptozotocin (two doses of 150 mg/kg body-weight). About half the streptozotocin-treated animals had high urinary glucose following an oral glucose dose; these animals also grew more slowly than the others. At 4 months after streptozotocin the animals were killed for measurement of tissue vitamin C, glucose and sorbitol. Streptozotocin moderately increased the concentration of glucose in plasma, lens and aqueous humour. Lens sorbitol levels increased only in the group exposed to streptozotocin plus marginal vitamin C. There was a significant (P < 0.02) positive correlation between urinary glucose and lens sorbitol levels overall. Liberal vitamin C intake may thus counteract the effect of streptozotocin diabetes on lens sorbitol, suggesting a new function of vitamin C, possibly related to cataractogenesis and to the biochemical lesions associated with diabetes.

Type
Metabolic Effects of Vitamin C
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Barnett, P. A., Gonzalez, R. G., Chylack, L. T. & Cheng, H.-M. (1986) The effect of oxidation on sorbitol kinetics. Diabetes 35, 426432.Google Scholar
Bates, C. J. & Cowen, T. D. (1988) Effects of age and dietary vitamin C on the contents of ascorbic acid and acid-soluble thiol in lens and aqueous humour of guinea-pigs. Experimental Eye Research 46, 937945.Google Scholar
Bensch, K. G., Fleming, J. E. & Lohmann, W. (1985) The rôle of ascorbic acid in senile cataract. Proceedings of the National Academy of Sciences, USA 82, 71937196.Google Scholar
Bergmeyer, H. U. (1974) d-Sorbitol. In Methods of Enzymatic Analysis, Vol. 3, pp. 13231332 [Bergmeyer, H. U., editor]. New York: Academic Press.Google Scholar
Blondin, J., Baragi, V., Schwartz, E. R., Sadowski, J. A. & Taylor, A. (1986) Delay of UV-induced eye lens protein damage in guinea-pigs by dietary ascorbate. Journal of Free Radicals in Biology and Medicine 2, 275281.CrossRefGoogle ScholarPubMed
Bron, A. J. & Brown, N. A. P. (1986) Perinuclear lens retrodots: a rôle for ascorbate in cataractogenesis. British Journal of Ophthalmology 71, 8695.CrossRefGoogle Scholar
Brosky, G. & Logothetopoulos, J. (1989) Streptozotocin diabetes in the mouse and guinea-pig. Diabetes 18, 606611.Google Scholar
Cox, B. D., Whichelow, M. J., Butterfield, W. J. H. & Nicholas, P. (1974) Peripheral vitamin C metabolism in diabetics and non-diabetics: effect of intra-arterial insulin. Clinical Science and Molecular Medicine 47, 6372.Google Scholar
Creighton, M. O. & Trevithick, J. R. (1979) Cortical cataract formation prevented by vitamin E and glutathione. Experimental Eye Research 29, 689693.CrossRefGoogle ScholarPubMed
Devamanoharan, P. S., Henein, M., Morris, S., Ramachandran, S., Richards, R. D. & Varma, S. D. (1991) Prevention of selenite cataract by vitamin C. Experimental Eye Research 52, 563568.Google Scholar
DiMattio, J. (1989) Active transport of ascorbic acid into lens epithelium of the rat. Experimental Eye Research 49, 878885.Google Scholar
Elliott, K. R. F. & Pogson, C. I. (1977) The effects of starvation and experimental diabetes on phosphoenol-pyruvate carboxykinase of the guinea-pig. Biochemical Journal 164, 357361.CrossRefGoogle ScholarPubMed
Fukui, H. N., Epstein, D. L. & Kinoshita, J. H. (1973). Ascorbic acid effects on lens 86Rubidium transport. Experimental Eye Research 15, 249253.Google Scholar
Gerster, H. (1989) Antioxidant vitamins in cataract prevention. Zeitschrift für Ernährungswissenschaften 28, 5675.Google Scholar
Giblin, F. J., McCready, J. P., Kodama, T. & Reddy, V. N. (1984). A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humour. Experimental Eye Research 38, 8793.CrossRefGoogle Scholar
Ginter, E., Zdichynec, B., Holzerova, O., Ticha, E., Kobza, R., Koziakova, M., Cerna, O., Ozdin, L., Hruba, F., Novakova, V., Sasko, E. & Gaher, M. (1978) Hypocholesterolemic effect of ascorbic acid in maturity-onset diabetes mellitus. International Journal for Vitamin and Nutrition Research 48, 368373.Google ScholarPubMed
Gorray, K. C., Baskin, D., Brodsky, J. & Fujimoto, W. Y. (1986) Responses of pancreatic B cells to alloxan and streptozotocin in the guinea-pig. Pancreas 1, 130138.Google Scholar
Greenfield, H., Briggs, G. M., Watson, R. H. J. & Yudkin, J. (1969) An improved diet for carbohydrate preference studies with rats: some criticisms of experimental diets. Proceedings of the Nutrition Society 28, 43A.Google Scholar
Harding, J. J. & Crabbe, M. J. C. (1984). The lens: development, proteins, metabolism and cataract. In The Eye, 3rd ed., vol. lb, pp. 207492 [Davson, H., editor]. New York: Academic Press.Google Scholar
Higuchi, Y. (1982) Lipid peroxides and α-tocopherol in rat streptozotocin-induced diabetes mellitus. Acta Medica, Okayama 36, 165175.Google Scholar
Jacques, P. F., Chylack, L. T., McGandy, R. B. & Hartz, S. C. (1988a) Antioxidant status in persons with and without senile cataract. Archives of Ophthalmology 106, 337340.CrossRefGoogle ScholarPubMed
Jacques, P. F., Hartz, S. C., Chylack, L. T., McGandy, R. B. & Sadowsky, J. A. (1988b) Nutritional status in persons with and without senile cataract: blood vitamin and mineral levels. American Journal of Clinical Nutrition 48, 152158.CrossRefGoogle ScholarPubMed
Jain, S. K., Levine, S. N., Duett, J. & Hollier, B. (1990) Elevated lipid peroxidation levels in red blood cells of streptozotocin diabetic rats. Metabolism 39, 971975.CrossRefGoogle Scholar
Kador, P. F. & Kinoshita, J. H. (1984). Diabetic and galactosaemic cataracts. In Human Cataract Formation, pp. 110131. no106. London: Pitman. Ciba Foundation Symposium.Google Scholar
Klein, R., Engerman, R. L. & Ernest, J. T. (1980) Fluorophotometry. II. Streptozotocin-treated guinea-pigs. Archives of Ophthalmology 98, 22332234.Google Scholar
Kosegarten, D. C. & Maher, T. J. (1978) Use of guinea-pigs as a model to study galactose-induced cataract formation. Journal of Pharmaceutical Science 67, 14781479.Google Scholar
Koskela, T. K., Reiss, G. R., Brubaker, R. F. & Ellefson, R. D. (1989) Is the high concentration of ascorbic acid in the eye an adaptation to intense solar irradiation? Investigative Ophthalmology and Visual Science 30, 22652267.Google Scholar
Linklater, H. A., Dzialoszynski, T., McLeod, H. L., Sanford, S. E. & Trevithick, J. R. (1990) Modelling cortical cataractogenesis. XI. Vitamin C reduces γ-crystallin leakage from lenses in diabetic rats. Experimental Eye Research 51, 241247.CrossRefGoogle ScholarPubMed
McLennan, S., Yue, D. K., Fisher, E., Capogreco, C., Heffernan, S., Ross, G. R. & Turtle, J. R. (1988) Deficiency of ascorbic acid in experimental diabetes. Relationship with collagen and polyol pathway abnormalities. Diabetes 37, 359361.Google Scholar
Malone, J. I., Lowitt, S. & Cook, W. R. (1990) Nonosmotic diabetic cataracts. Pediatric Research 27, 293296.CrossRefGoogle ScholarPubMed
Nishigori, H., Hayashi, R., Jung, W., Lee, K. M. & Iwatsuru, M. (1985) Preventive effect of ascorbic acid against glucocorticoid-induced cataract formation of developing chick embryos. Experimental Eye Research 40, 445 451.Google Scholar
Nukatsuka, M., Sakurai, H., Yoshimura, Y., Nishida, M. & Kawada, J. (1988). Enhancement by streptozotocin of O2-radical generation by the xanthine oxidase system of pancreatic β-cells. FEBS Letters 239, 295298.Google Scholar
Ortwerth, B. J., Feather, M. S. & Oleson, P. R. (1988) The precipitation and cross-linking of lens crystallins by ascorbic acid. Experimental Eye Research 47, 155168.Google Scholar
Pirie, A. (1965) Glutathione peroxidase in lens and a source of hydrogen peroxide in aqueous humour. Biochemical Journal 96, 244353.Google Scholar
Riley, M. V., Schwartz, C. A. & Peters, M. I. (1986). Interactions of ascorbic acid and H2O2. Implications for in vitro studies of lens and cornea. Current Eye Research 5, 207216.Google Scholar
Rosenbaum, J. T., Howes, E. L & English, D. (1985) Ascorbate in aqueous humour protects against myeloperoxidase-induced oxidation. American Journal of Pathology 120, 244247.Google Scholar
Ross, W. M., Creighton, M. O., Stewart-DeHaan, P. J., Sanwal, M., Hirst, M. & Trevithick, J. R. (1982) Modelling cortical cataractogenesis. 3. In vivo effects of vitamin E on cataractogenesis in diabetic rats. Canadian Journal of Ophthalmology 17, 6166.Google ScholarPubMed
Russell, P., Garland, D., Zigler, J. S., Meakin, S. O., Tsui, L. C. & Breitman, H. L. (1987) Ageing effects of vitamin C on a human lens protein produced in vitro. FASEB Journal 1, 3235.Google Scholar
Schlosser, M. J., Kapeghian, J. C. & Verlangieri, A. J. (1984) Effects of streptozotocin in the male guinea-pig: a potential animal model for studying diabetes. Life Sciences 35, 649655.Google Scholar
Schlosser, M. J., Kapeghian, J. C. & Verlangieri, A. J. (1987) Selected physical and biochemical parameters in the streptozotocin-treated guinea-pig: insights into the diabetic guinea-pig model. Life Sciences 41, 13451353.Google Scholar
Simonelli, F., Nesti, A., Pensa, M., Romano, L., Savastano, S., Rinaldi, E. & Auricchio, G. (1989) Lipid peroxidation and human cataractogenesis in diabetes and severe myopia. Experimental Eye Research 49, 181187.Google Scholar
Som, S., Basu, D., Mukherjee, S., Deb, P., Choudhury, P. R., Mukherjee, S., Chatterjee, S. N. & Chatterjee, I. B. (1981) Ascorbic acid metabolism in diabetes mellitus. Metabolism 30, 572577.Google Scholar
Srivastava, S. K. & Ansari, N. H. (1988) Prevention of sugar-induced cataractogenesis in rats by butylated hydroxytoluene. Diabetes 37, 15051508.CrossRefGoogle ScholarPubMed
Stankova, L., Riddle, M., Larned, J., Burry, K., Menashe, D., Hart, J. & Bigley, R. (1984) Plasma ascorbate concentrations and blood cell dehydroascorbate transport in patients with diabetes mellitus. Metabolism 33, 347353.CrossRefGoogle ScholarPubMed
Taylor, A. (1989) Associations between nutrition and cataract. Nutrition Reviews 47, 225234.Google Scholar
Taylor, A., Jahngen, J. H., Blondin, J. & Jahngen, E. G. E. (1987). Ascorbic acid delays ultraviolet-induced, age-related damage to lens protease and the effect of maturation and aging on the function of the ubiquitin-lens protein conjugating apparatus. In Proteases in Biological Control and Biotechnology, pp. 283293. New York: Alan R. Liss.Google Scholar
Thurnham, D. I. (1988). Vitamin C (ascorbic acid): antioxidant functions of vitamin C in disease in man and animals. In Comparative Nutrition, pp. 91103 [Blaxter, K. and Macdonald, I., editors]. London: John Libbey.Google Scholar
Trevithick, J. R., Chaudun, E., Muel, A. S., Courtois, Y. & Counis, M. F. (1987) Effect of X-irradiation and vitamin C on DNA degradation and endogenous DNase in embryonic chick lens cells. Current Eye Research 6, 12751281.CrossRefGoogle ScholarPubMed
Varma, S. D. (1980) Aldose reductase and the etiology of diabetic cataracts. Current Topics in Eye Research 3, 91155.Google Scholar
Varma, S. D. (1985) Ascorbic acid and the eye, with special reference to the lens. Annals of the New York Academy of Sciences 498, 280305.CrossRefGoogle Scholar
Varma, S. D. & Kinoshita, J. H. (1974) Sorbitol pathway in diabetic and galactosemic rat lens. Biochimica et Biophysica Acta 338, 632640.Google Scholar
Varma, S. D. & Richards, R. D. (1988) Ascorbic acid and the eye lens. Ophthalmic Research 20, 164173.Google Scholar
Vinson, J. A., Possanza, C. J. & Drack, A. V. (1986) The effect of ascorbic acid on galactose-induced cataracts. Nutrition Reports International 33, 665668.Google Scholar
Vinson, J. A., Staretz, M. E., Bose, P., Kassm, H. M. & Basalyga, B. S. (1989) In vitro and in vivo reduction of erythrocyte sorbitol by ascorbic acid. Diabetes 38, 10361041.Google Scholar
Von Losert, W., Vetter, H. & Wendt, H. (1980) The influence of vitamin C (ascorbic acid) on glucose tolerance, insulin activity and insulin elimination from the blood. Arzneimittel-Forschung 30, 2129.Google Scholar
Wehner, H. & Majorek, B. (1975) Early glomerular changes in streptozotocin diabetes of the guinea-pig. Virchows Archiv A: Pathology, Anatomy and Histology 368, 179189.CrossRefGoogle ScholarPubMed
Williams, R. N. & Paterson, C. A. (1986) A protective role for ascorbic acid during inflammatory episodes in the eye. Experimental Eye Research 42, 211218.CrossRefGoogle ScholarPubMed
Yew, M. S. (1983a) Effect of streptozotocin diabetes on tissue ascorbic acid and dehydroascorbic acid. Hormone and Metabolic Research 15, 158.CrossRefGoogle ScholarPubMed
Yew, M. S. (1983b) Ascorbic acid supplementation and induction of diabetes in rats. Nutrition Reports International 27, 297302.Google Scholar
Zebrowski, E. J. & Bhatnagar, P. K. (1979) Urinary excretion pattern of ascorbic acid in streptozotocin-diabetic and insulin-treated rats. Pharmacological Research Communications 11, 95103.Google Scholar