Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T17:43:32.541Z Has data issue: false hasContentIssue false

The effect of tungstate ingestion on xanthine oxidase in milk and liver

Published online by Cambridge University Press:  09 March 2007

E. C. Owen
Affiliation:
Biochemistry Department, Hannah Dairy Research Institute, Ayr
R. Proudfoot
Affiliation:
Biochemistry Department, Hannah Dairy Research Institute, Ayr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The ingestion of doses of up to 6 g sodium tungstate (56 mg W/kg body-weight) by goats was found to diminish the amount of xanthine oxidase secreted in their milk so that, in some samples, the enzyme became undetectable. This effect occurred whether the goats were eating a semi-synthetic or a conventional diet.

2. Tungstate ingestion by goats did not affect the concentration of riboflavine in their milk.

3. The ingestion of sodium tungstate by young goats for 3–5 months diminished the amount of xanthine oxidase in their livers.

4. When given in early lactation to two cows, doses of sodium tungstate (up to 20 g) diminished the titre of xanthine oxidase in their milk with no concomitant effect on the yields.

5. Much later in lactation the milk phosphatase of these two cows was poorly correlated with milk xanthine oxidase. Reasons for this are discussed.

6. Under anaerobic conditions, with xanthine as substrate and triphenyl-tetrazolium chloride as hydrogen acceptor, neither molybdate nor tungstate affected the xanthine oxidase activity of cow's or goat's milk in vitro. Molybdate in vitro did not enhance the very low titre of human milk.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1968

References

Affonso, O. R. & Mitidieri, E. (1965). Anais Acad. bras. Cienc. 37, 289.Google Scholar
Archibald, J. G. (1951). J. Dairy Sci. 34, 1026.CrossRefGoogle Scholar
Avis, P. G., Bergel, F., Bray, R. C. & Shooter, K. V. (1956). Symposium on Inorganic Nitrogen Metabolism, p. 552. Baltimore: John Hopkins Press.Google Scholar
Bauer, D. J. & Bradley, P. L. (1956). Br. J. exp. Path. 37, 447.Google Scholar
Bradley, P. L. & Gunther, M. (1960). Biochem. J. 74, 15P.Google Scholar
Bray, R. C., Chisholm, A. J., Hart, L. I., Meriwether, L. S. & Watts, D. C. (1966). Flavins and Flavo-proteins, p. 117. [Slater, E. C., editor.] London: Elsevier Publishing Co.Google Scholar
Chanda, R. & Owen, E. C. (1952). Biochem. J. 50, 100.Google Scholar
Crossland, A., Owen, E. C. & Proudfoot, R. (1958). Br. J. Nutr. 12, 312.CrossRefGoogle Scholar
De Angelis, W. J. & Totter, J. R. (1964). J. biol. Chem. 239, 1012.CrossRefGoogle Scholar
De Renzo, E. C. (1954). Ann. N. Y. Acad. Sci. 57, 905.CrossRefGoogle Scholar
De Renzo, E. C., Kaleita, E., Heytler, P., Oleson, J. J., Hutchings, B. L., & Williams, J. H. (1953). J. Am. chem. Soc. 75, 753.CrossRefGoogle Scholar
Dick, A. T. (1956). Proc. int. Grassl. Congr. VII Wellington, New Zealand, p. 368.Google Scholar
Fisher, R. A. & Yates, F. (1938). Statistical Tables. Edinburgh: Oliver and Boyd.Google Scholar
Hart, L. I. (1964). Some aspects of riboflavin metabolism in the ruminant. PhD Thesis, University of Glasgow.Google Scholar
Hart, L. I., Owen, E. C. & Proudfoot, R. (1967). Br. J. Nutr. 21, 617.CrossRefGoogle Scholar
Higgins, E. S., Richert, D. A. & Westerfeld, W. W. (1956). J. Nutr. 59, 539.CrossRefGoogle Scholar
Keller, E. C. Jr & Glassman, E. (1964). Science, N. Y. 143, 40.CrossRefGoogle Scholar
Kiermeier, E. & Capellari, K. (1958). Biochem. Z. 330, 160.Google Scholar
Kinard, F. W. & van der Erve, J. (1941). J. Pharmac. exp. Ther. 72, 196.Google Scholar
Miller, R. F., Price, N. O. & Engel, R. W. (1956). J. Nutr. 60, 539.CrossRefGoogle Scholar
Mitchell, R. L. (1948). Research 1, 159.Google Scholar
Modi, V. V., Owen, E. C. & Darroch, R. A. (1959). J. Dairy Res. 26, 277.CrossRefGoogle Scholar
Modi, V. V., Owen, E. C. & Proudfoot, R. (1959). Proc. Nutr. Soc. 18, i.Google Scholar
Morton, R. K. (1950). Nature, Lond. 166, 1092.Google Scholar
Munro, H. N. (1964). In Mammalian Protein Metabolism. Vol. 1, ch. 10. [Munro, H. N. and Allison, J. B., editors.] London; Academic Press Inc.Google Scholar
Muraoka, S., Enomoto, H., Sugiyama, M. & Yamasaki, H. (1967). Biochem. biophys. Acta 143, 408.Google Scholar
Neave, F. K. (1939). J. Dairy Res. 10, 475.Google Scholar
Owen, E. C. (1967). In Urea as a Protein Supplement, ch. 27. [Briggs, H. M., editor.] Oxford: Pergamon Press.Google Scholar
Owen, E. C.Hart, L. I. & Hytten, F. E. (1962). Proc. Nutr. Soc. 21, xv.Google Scholar
Owen, E. C. & West, D. W. (1968). J. chem. Soc. (C) p. 34.Google Scholar
Pham-Huu-Chanh, (1964). Medna exp. 11, 38.Google Scholar
Pinsent, J. (1954). Biochem. J. 57, 10.CrossRefGoogle Scholar
Richert, D. A. & Westerfeld, W. W. (1953). J. biol. Chem. 203, 915.CrossRefGoogle Scholar
Roussos, G. G. (1963). Biochim. biophys. Acta 73, 338.Google Scholar
Roussos, G. G. & Morrow, B. H. (1966). Fedn Proc. Fedn Am. Socs exp. Biol. 251, no. 1, p. 796.Google Scholar
Strittmatter, C. F. (1965). J. biol. Chem. 240, 2557.CrossRefGoogle Scholar
Webb, B. H. & Johnson, A. H. (1965). Fundamentals of Dairy Chemistry. New York: AVI Publishing Co.Google Scholar
West, D. W., Owen, E. C. & Taylor, M. M. (1967). Proc. Nutr. Soc. 26, xvii.Google Scholar
Whittlestone, W. G. (1953). J. Dairy Res. 20, 146.CrossRefGoogle Scholar
Zittle, C. A., Dellamonica, E. S., Custer, J. H. & Rudd, R. K. (1956). J. Dairy Sci. 39, 522.CrossRefGoogle Scholar