Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T13:21:47.407Z Has data issue: true hasContentIssue false

The effect of trypsin inhibitors on pancreatopeptidase E, trypsin, chymotrypsin and amylase in the pancreas and intestinal tract of chicks receiving raw and heated soya-bean diets*

Published online by Cambridge University Press:  09 March 2007

A. Gertler
Affiliation:
Department of Agricultural Biochemistry and Animal Nutrition, Faculty of Agriculture, Hebrew University, Rehovot, Israel
Zafrira Nitsan
Affiliation:
Division of Poultry Husbandry, The Volcani Institute of Agricultural Research, Rehovot, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Feeding on a raw soya-bean diet (RSD) increased the levels of trypsin, chymotrypsin and pancreatopeptidase E but decreased the level of amylase in the pancreas of chicks as compared to a heated soya-bean diet (HSD), while supplementation of HSD with soya-bean trypsin inhibitors increased the activity of all four enzymes. HSD + trypsin inhibitors caused significant enlargement of the pancreas but only a slight depression in growth rate.

2. Fasting for 24 h of chicks previously given RSD and HSD increased the activity of all four enzymes but the increase was much greater in chicks previously given RSD than in those previously given HSD.

3. Feeding RSD for 4 d to chicks previously adapted to HSD resulted in a dramatic inhibition in growth rate, a small increase in pancreas weight, and an increase in the activity of all proteolytic enzymes, while no change in the amylase was detectable.

4. Trypsin, chymotrypsin and pancreatopeptidase E activities were assayed in the contents of the small intestine and caecum of chicks fed on RSD or HSD over a period of 35 d. Trypsin and chymotrypsin activities in the small intestine were lower in chicks fed on RSD while pancreatopeptidase E activity was almost equal or even higher in RSD-fed chicks, especially at the age of 35 d. Trypsin activity in the caecum of RSD-fed chicks was lower at all stages of the experiment, while the pancreatopeptidase E and chymotrypsin activities in the caecum of RSD-fed chicks exceeded the levels in the HSD group at the age of 21 and 35 d respectively. It would appear therefore that pancreatopeptidase E may play an important part in overcoming the inhibition of the proteolytic activity in the intestine of chicks fed on RSD.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

REFERENCES

Alumot, E. & Nitsan, Z. (1961). J. Nutr. 73, 71.CrossRefGoogle Scholar
Bernfeld, P. (1955). Meth. Enzym. 1, 149.CrossRefGoogle Scholar
Birk, Y. & Gertler, A. (1968). Biochem. Prep. 12, 25.Google Scholar
Chernick, S. S., Lepkovsky, S. & Chaikoff, I. L. (1948). Am. J. Physiol. 155, 33.CrossRefGoogle Scholar
Gertler, A. & Birk, Y. (1970). Europ. J. Biochem. 12, 170.CrossRefGoogle Scholar
Gertler, A., Birk, Y. & Bondi, A. (1967). J. Nutr. 91, 358.CrossRefGoogle Scholar
Gorrill, A. D. L. & Thomas, J. W. (1967). Analyt. Biochem. 19, 211.CrossRefGoogle Scholar
Ham, W. E., Sandstedt, R. M. & Mussehl, F. E. (1945). J. biol. Chem. 161, 635.CrossRefGoogle Scholar
Howard, F. & Yudkin, J. (1963). Br. J. Nutr. 17, 281.CrossRefGoogle Scholar
Hurwitz, S. & Bornstein, S. (1963). Israel J. agric. Res. 13, 147.Google Scholar
Khayambashi, H. & Lyman, R. L. (1966). Fedn Proc. Fedn Am. Socs exp. Biol. 25, 676.Google Scholar
Khayambashi, H. & Lyman, R. L. (1969). Am. J. Physiol. 217, 646.CrossRefGoogle Scholar
Konijn, A. M. & Guggenheim, K. (1967). Proc. Soc. exp. Biol. Med. 126, 65.CrossRefGoogle Scholar
Konijn, A. M., Guggenheim, K. & Birk, Y. (1969). J. Nutr. 97, 265.CrossRefGoogle Scholar
Kunitz, M. (1947). J. gen. Physiol. 30, 291.CrossRefGoogle Scholar
Lepkovsky, S., Furuta, F., Ozone, K., Koike, T. & Wagner, M. (1966). Br. J. Nutr. 20, 257.CrossRefGoogle Scholar
Lepkovsky, S., Koike, T., Sugiura, M., Dimick, M. K. & Furuta, F. (1966). Br. J. Nutr. 20, 421.Google Scholar
Liener, I. E. (1969). In Toxic Constituents of Plant Foodstuffs p. 31. [Liener, I. E., editor]. New York and London: Academic Press.Google Scholar
Lyman, R. L., Wilcox, S. S. & Monsen, E. R. (1962). Am. J. Physiol. 202, 1077.CrossRefGoogle Scholar
Marchis-Mouren, G., Paséro, L. & Desnuelle, P. (1963). Biochem. biophys. Res. Commun. 13, 262.CrossRefGoogle Scholar
Naughton, M. A. & Sanger, F. (1961). Biochem. J. 78, 156.CrossRefGoogle Scholar
Neurath, H. & Schwert, G. W. (1950). Chem. Rev. 46, 69.CrossRefGoogle Scholar
Nitsan, Z. & Alumot, E. (1963). J. Nutr. 80, 299.CrossRefGoogle Scholar
Nitsan, Z. & Alumot, E. (1964). J. Nutr. 84, 179.CrossRefGoogle Scholar
Rackis, J. J., Smith, A. K., Nash, A. M., Robbins, D. J. & Booth, A. N. (1963). Cereal Chem. 40, 531.Google Scholar
Reboud, J. P., Ben Abdeljlil, A. & Desnuelle, P. (1962). Biochim. biophys. Acta 58, 326.CrossRefGoogle Scholar
Reddy, B. S., Pleasants, J. R. & Wostmann, B. S. (1969). J. Nutr. 97, 327.CrossRefGoogle Scholar
Sampath Narayanan, A. & Anwar, R. A. (1969). Biochem. J. 114, 11.CrossRefGoogle Scholar
Snedecor, G. W. (1962). Statistical Methods 5th ed.Ames, Iowa: The Iowa State College Press.Google Scholar
Westfall, R. J., Bosshardt, D. K. & Barnes, R. H. (1948). Proc. Soc. exp. Biol. Med. 68, 498.CrossRefGoogle Scholar