Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T23:48:12.476Z Has data issue: false hasContentIssue false

The effect of the extent of hydrolysis in casein on its specific dynamic action in the rat

Published online by Cambridge University Press:  09 March 2007

J. Gawęcki
Affiliation:
Institute of Human Nutrition, Academy of Agriculture, Mazowiecka 48, 60-623 Poznań, Poland
J. Jeszka
Affiliation:
Institute of Human Nutrition, Academy of Agriculture, Mazowiecka 48, 60-623 Poznań, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Adult female rats given a diet containing 200 g casein/kg showed an increase in heat production which reached a maximum in 10–20 min after completion of food intake.

2. Replacement of casein in the diet by enzymic hydrolysates of casein of different extents of hydrolysis (pepsin for 1 or 3 h and pancreatin for 6, 12 or 24 h) resulted in a decrease in metabolic rate (stimulation) in the rat, reaching a maximum of 61.8% of the control value (non-hydrolysed casein).

3. The specific dynamic action of casein and casein hydrolysate was inversely proportional to the amount of amino-nitrogen released.

4. On the basis of the experimental findings it may be concluded that the synthesis and secretion of digestive enzymes were the main causes of the increase in metabolic rate after protein ingestion.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Benedict, F. G. & Emmes, L. E. (1912). Am. J. Physiol. 30, 197.CrossRefGoogle Scholar
Bidder, F. & Schmidt, C. (1877). Pflügers Arch. ges. Physiol. 15, 634.Google Scholar
Borsook, H. (1936). Biol. Rev. 11, 147.Google Scholar
Borsook, H. & Winegarden, H. M. (1931). Proc. natn. Acad. Sci. U.S.A. 17, 13.CrossRefGoogle Scholar
Brobeck, J. R. (1948). Yale J. Biol. Med. 20, 545.Google Scholar
Chambers, W. H. & Lusk, G. (1930). J. biol. Chem. 85, 611.Google Scholar
Garrow, J. S. & Hawes, S. F. (1972). Br. J. Nutr. 27, 211.Google Scholar
Gawęcki, J., Jeszka, J., Urbanowicz, M. & Gardyś-Modrzyńska, M. (1978). Acta physiol. pol. (In the Press).Google Scholar
Gawęcki, J., Urbanowicz, M., Lis, B. & Buchowski, M. (1976). Ann. Poznań, Agr. Univ. 89, 45.Google Scholar
Golinko, O. M. & Sysojew, J. A. (1975). Wopr. pitanija 6, 12.Google Scholar
Golinko, O. M. & Szlygin, G. K. (1976) Wopr. pitanija 6, 31.Google Scholar
Konturek, S. (1976). Acta physiol. pol. 27, 12.Google Scholar
Magnus-Levy, A. (1894). Pflügers Arch. ges. Physiol. 55, 1.CrossRefGoogle Scholar
Mellinkoff, S. M., Frankland, M., Boyle, D. & Greipel, M. (1956). J. appl. Physiol. 8, 535.Google Scholar
Miller, D. S. & Bender, A. E. (1955). Br. J. Nutr. 9, 382.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1959). Br. J. Nutr. 13, 501.Google Scholar
Mitchell, H. H. (1943). Science, N. Y. 80, 558.Google Scholar
Passmore, R. & Ritchie, F. J. (1957). Br. J. Nutr. 11, 79.Google Scholar
Pawlow, I. P. & Schumowa-Simanowskaja, E. O. (1895). Arch. Anat. Physiol. 53.Google Scholar
Phillips, P. H. & Hart, E. B. (1935). J. biol. Chem. 109, 657.CrossRefGoogle Scholar
Rubner, M. (1902). Die Gesetze des Energieverbrauchs bei der Ernährung. Leipzig and Vienna: Deutiche.Google Scholar
Simek, V. (1975). Physiologia Bohemoslov 24, 421.Google Scholar
Tanaka, T. & Yano, A. (1975). Proc. 10th int. Congr. Nutr.Kyoto, Japan.Google Scholar
Terroine, E. F. & Bonnet, R. (1926). Ann. physiol. 2, 488.Google Scholar
Wilhelmj, C. M., Bollman, J. L. & Mann, F. G. (1928). Am. J. Physiol. 87, 497.CrossRefGoogle Scholar