Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T10:30:45.090Z Has data issue: false hasContentIssue false

Effect of riboflavine deficiency on incorporation in vivo of [14C]amino acid into liver proteins of rats

Published online by Cambridge University Press:  09 March 2007

Ajay K. Chatterjee
Affiliation:
Department of Physiology, University College of Science, 92 Acharya Prafulla Chandra Road, Calcutta-9, India
S. C. Jamdar
Affiliation:
Department of Physiology, University College of Science, 92 Acharya Prafulla Chandra Road, Calcutta-9, India
B. B. Ghosh
Affiliation:
Department of Physiology, University College of Science, 92 Acharya Prafulla Chandra Road, Calcutta-9, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of riboflavine deficiency on in vivo incorporation of [2–14C]glycine into proteins of liver homogenates and its subcellular fractions has been studied on rats maintained on a 16 % protein diet.

2. Riboflavine deficiency did not seem to affect the in vivo incorporation of [2–14C]g1ycine into proteins of liver homogenates. But riboflavine deficiency caused increased and reduced invivo incorporation of [14C]amino acid into mitochondrial and microsomal proteins, respectively.There was no significant change in the in vivo incorporation of [14C]amino acid into proteins ofnuclear, ribosomal and soluble fractions in riboflavine deficiency.

3. Riboflavine deficiency caused enhanced and reduced proportions of liver mitochondrial and microsomal proteins, respectively.

4. The results are discussed as suggestive of enhanced and reduced protein synthesis in the mitochondrial and microsomal fractions, respectively, of riboflavine-deficient rats.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

REFERENCES

Allison, J. B., Wannemacher, R. W. Jr & Banks, W. L. Jr (1963). Fedn Proc. Fedn Am. Socs exp. Biol. 22, 1126.Google Scholar
Borgström, S & Hammersten, G. (1944). Acta physiol. scand. 7, 80.CrossRefGoogle Scholar
Burch, H. B., Hunter, F. E. Jr, Combs, A. M. & Schutz, B. A. (1960). J. biol. Chem. 235, 1540.CrossRefGoogle Scholar
Chatterjee, A. K. & Ghosh, B. B. (1967). Experientia 23, 633.CrossRefGoogle Scholar
Chatterjee, A. K. & Ghosh, B. B. (1968). Experientia 24, 786.CrossRefGoogle Scholar
Chatterjee, A. K. & Ghosh, B. B. (1969). Endokrinologie 54, 184.Google Scholar
Chatterjee, A. K., Jamdar, S. C. & Ghosh, B. B. (1966). Experientia 22, 794.CrossRefGoogle Scholar
Chatterjee, A. K., Roy, A. D. & Ghosh, B. B. (1969). Br. J. Nutr. 23, 657.CrossRefGoogle Scholar
Czaczkes, J. W. & Guggenheim, K. (1946). J. biol. Chem. 162, 267.CrossRefGoogle Scholar
Doisy, R. J. & Westerfeld, W. W. (1952). Proc. Soc. exp. Biol. Med. 80, 203.CrossRefGoogle Scholar
Eichel, H. J. & Bukovsky, J. (1961). Nature, Lond. 191, 243.CrossRefGoogle Scholar
Fass, S. & Rivlin, R. S. (1969). Am. J. Physiol. 217, 988.CrossRefGoogle Scholar
Fisher, R. A. (1936). Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd.Google Scholar
Gornall, A. G., Bardawill, C. J. & David, M. M. (1949). J. biol. Chem. 177, 751.CrossRefGoogle Scholar
Guggenheim, K. & Diamant, E. J. (1959). Br. J. Nutr. 13, 61.CrossRefGoogle Scholar
Jamdar, S. C. & Mookerjea, S. (1962). Can. J. Biochem. Physiol. 40, 1059.CrossRefGoogle Scholar
Jamdar, S. C. & Udupa, K. B. (1967). Endokrinologie 51, 175.Google Scholar
Kim, Y. S. & Lambooy, J. P. (1969). J. Nutr. 98, 467.CrossRefGoogle Scholar
Korner, A. (1960). J. Endocr. 21, 177.CrossRefGoogle Scholar
McQuarrie, E. B. & Venosa, A. T. (1945). Science, N. Y. 101, 493.CrossRefGoogle Scholar
Mayfield, H. L. & Hedrick, M. T. (1949). J. Nutr. 37, 475.CrossRefGoogle Scholar
Mookerjea, S. & Hawkins, W. W. (1960). Br. J. Nutr. 14, 231.CrossRefGoogle Scholar
Mookerjea, S. & Jarndar, S. C. (1962). Can. J. Biochem. Physiol. 40, 1065.CrossRefGoogle Scholar
Rabinovitz, M., Olson, M. E. & Greenberg, D. M. (1954). J. biol. Chem. 210, 837.CrossRefGoogle Scholar
Reis, P. J., Coote, J. L. & Work, T. S. (1959). Biochem. J. 72, 24 p.Google Scholar
Rendi, R. (1959). Expl Cell Res. 17, 585.CrossRefGoogle Scholar
Sarett, H. P., Klein, J. R. & Perlzweig, W. A. (1942). J. Nutr. 24, 295.CrossRefGoogle Scholar
Sarett, H. P. & Perlzweig, W. A. (1943). J. Nutr. 25, 173.CrossRefGoogle Scholar
Schneider, W. C. & Hogeboom, G. H. (1950). J. biol. Chem. 183, 123.CrossRefGoogle Scholar
Seifter, S., Harkness, D. M., Rubin, L. & Muntwyler, E. (1948). J. biol. Chem. 176, 1371.CrossRefGoogle Scholar
Sure, B. (1941). J. Nutr. 22, 295.CrossRefGoogle Scholar
Sure, B. (1944). J. Nutr. 27, 447.CrossRefGoogle Scholar
Sure, B. & Dichek, M. (1941) . J. Nutr. 21, 453.CrossRefGoogle Scholar
Sure, B. & Ford, Z. W. Jr (1942). J. biol. Chem. 146, 241.CrossRefGoogle Scholar
Unna, K., Singher, H. O., Kensler, C. J., Taylor, H. C. Jr & Rhoads, C. P. (1944). Proc. Soc. exp. Biol. Med. 55, 254.CrossRefGoogle Scholar