Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T03:38:41.276Z Has data issue: false hasContentIssue false

The effect of replacement of dietary fat by palm oil on in vitro cytokine release

Published online by Cambridge University Press:  09 March 2007

I. Engelberts
Affiliation:
Departments of Surgery, University of Limburg, Maastricht, The Netherlands
K. Sundram
Affiliation:
Palm Oil Research Institute of Malaysia (PORIM), Kuala Lumpur, Malaysia
A. C. Van Houwelingen
Affiliation:
Departments of Human Biology, University of Limburg, Maastricht, The Netherlands
G. Hornstra
Affiliation:
Departments of Human Biology, University of Limburg, Maastricht, The Netherlands
A. D. M. Kester
Affiliation:
Departments of Medical Informatics and Statistics, University of Limburg, Maastricht, The Netherlands
M. Ceska
Affiliation:
Sandoz Forschungsinstitut, Wien, Austria
G. J. M Francot
Affiliation:
Departments of Surgery, University of Limburg, Maastricht, The Netherlands
C. J. Van Der Linden
Affiliation:
Departments of Surgery, University of Limburg, Maastricht, The Netherlands
W. A. Buurman
Affiliation:
Departments of Surgery, University of Limburg, Maastricht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the present study the effect of replacement of dietary fat by palm oil in the normal Western diet on the in vitro release of the inflammatory cytokines tumour necrosis factor (TNF), interleukin (IL)-6 andIL-8 was examined. A maximal replacement of 700 g/kg dietary fat was achieved for thirty-eight male volunteers who consumed either a palm-oil diet or a control diet in a double-blind, cross-over study with6-week experimental periods, and 3-week run-in and wash-out periods. At the end of both experimental periods, whole blood was stimulated in vitro with 0.02 (sub-optimal), or 10 ng lipopolysaccharide(LPS)/ml (maximal), whereafter TNF, IL-6, and IL-8 concentrations in the culture supernatant fraction were measured using specific enzyme-linked immunosorbent assays (ELISA). Mean cytokine production with sub-optimal, or maximal LPS stimulation of peripheral whole blood was similar for both the palm oil, and the control group. The relative TNF response, however, was reduced by replacement of dietary fat with palm oil. Separate analysis of the data from the first and second experimental periods strongly suggested that the residual effect of the palm-oil diet on the relative TNF response was longer than 9weeks. Cytokine homeostasis determines the course of the inflammatory response and the progression of atherosclerosis. The effect of palm-oil consumption on the proneness of the peripheral blood cells to produce TNF may, therefore, alter the prevalence of these common diseases.

Type
Metabolic Effects of Fats
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Aarden, L. A., de Groot, E. R., Schaap, O. L. & Lansdorp, P. M. (1987). Production of hybridoma growth factor by human monocytes. European Journal of Immunology 17, 14111416.CrossRefGoogle ScholarPubMed
Armitage, P. & Berry, G. (1987). Statistical Methods in Medical Research, pp. 222226. Oxford: Blackwell.Google Scholar
Bang, H. O., Dyerberg, J. & Hjarne, N. (1976). The composition of food consumed by Greenland Eskimos. Acta Medica Scandinavica 200, 69–13.CrossRefGoogle ScholarPubMed
Bittiner, S. B., Tucker, W. F., Cartwright, I. & Bleehen, S. S. (1988). A double blind, randomized, placebo-controlled trial of fish oil in psoriasis. Lancet 1, 378380.CrossRefGoogle ScholarPubMed
Ceska, M., Effenberger, F., Peichl, P. & Pursch, E. (1989). Purification and characterization of monoclonal and polyclonal antibodies to neutrophil activating peptide (NAP-1). The development of a sensitive ELISA method for the determination of NAP-1 and anti-NAP-1 antibodies. Cytokine. 1, 136 Abstr.Google Scholar
Desch, C. E., Kovach, N. L., Present, W., Broyles, C. & Harlan, J. M. (1989). Production of human tumor necrosis factor from whole blood ex vivo. Lymphokine Research 8, 141146.Google ScholarPubMed
Dyerberg, J., Bang, H. O. & Hjarne, N. (1975). Fatty acid composition of the plasma lipids in Greenland Eskimos. American Journal of Clinical Nutrition 28, 958966.CrossRefGoogle ScholarPubMed
Endres, S., Cannon, J. G., Ghorbani, R., Dempsey, R. A., Sisson, S. D., Lonnemann, G., Van der Meer, J. W. M., Wolff, S. M. & Dinarello, C. A. (1989 a). In vitro production of ILIβ, ILlα, TNF and IL-2 in healthy subjects: distribution, effect of cyclo-oxygenase inhibition and evidence of independent gene regulation. European Journal of Immunology 19, 23272333.CrossRefGoogle Scholar
Endres, S., Ghorbani, R., Kelley, V. E., Georgilis, K., Lonnemann, G., van der Meer, J. W. M., Cannon, J. G., Rogers, T. S., Klempner, M. S., Weber, P. C., Schaeffer, E. J., Wolff, S. M. & Dinarello, C. A. (1989 b). The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-l and tumor necrosis factor by mononuclear cells. New England Journal of Medicine 320, 265271.CrossRefGoogle Scholar
Engelberts, I., Moiler, A., Schoen, G. J. M., van der Linden, C. J. & Buurman, W. A. (1991 a). Evaluation of measurement of human TNF in plasma by ELISA. Lymphokine and Cytokine Research 10, 6976.Google ScholarPubMed
Engelberts, I., von Asmuth, E. J. U., van der Linden, C. J. & Buurman, W. A. (1991 b). The interrelation between TNF, TL-6, and PAF secretion induced by LPS in an in vivo and in vitro murine model, Lymphokine and Cyrokine Research 10, 127131.Google Scholar
Freed, M. S., Spaethe, S. M., Lefkowith, J. B., Saffitz, J. E. & Needleman, P. (1989). Essential fatty acid deficiency inhibits early but not late leukocyte infiltration into rabbit myocardial infarcts. Prostaglandins 38, 3344.CrossRefGoogle Scholar
Harman, D. & Miller, R. W. (1986). Effect of vitamin E on the immune response to influenza virus vaccine and incidence of infectious disease in man. Age 9, 2123.CrossRefGoogle Scholar
Harris, H. W., Grunfeld, C., Feingold, K. R. & Rapp, J. H. (1990). Human VLDL and chylomicrons can protect against LPS-induced death in mice. Journal of Clinical Investigation 86, 696702.CrossRefGoogle Scholar
Komiyama, E., Iizuka, K., Yamaoka, M., Watanabe, H., Tsuchiya, N. & Umezawa, I. (1989). Studies on the biological activity of tocotrienols. Chemical and Pharmacological Bulletin 37, 13691371.CrossRefGoogle ScholarPubMed
Kremer, J. M., Jubiz, W., Michalek, A., Rynes, R. I., Bartholomew, L. E., Bigaouette, J., Timschalk, M., Beeler, D. & Lininger, L. (1987). Fish-oil fatty acid supplementation in active rheumatoid arthritis: a double-blinded, controlled, crossover study. Annals of Internal Medicine 106, 497503.CrossRefGoogle ScholarPubMed
Kromann, N. & Green, A. (1980). Epidemiological studies in the Upernavik district, Greenland: incidence of some chronic diseases 1950–1974. Acta Medica Scandinavica 208, 401406.CrossRefGoogle ScholarPubMed
Kunkel, S. L., Remick, D. G., Strieter, R. M. & Larrick, J. W. (1989). Mechanisms that regulate the production and effects of tumor necrosis factor-alpha. Critical Reviews in Immunology 9, 93118.Google ScholarPubMed
Lee, T. H., Hoover, R. L., Williams, J. D., Sperling, R. I., Ravalese, J., Spur, B. W., Robinson, D. R., Corey, E. J., Lewis, R. A. & Austen, K. F. (1985). Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. New England Journal of Medicine 312, 12171224.CrossRefGoogle ScholarPubMed
Lefkowith, J. B., Morrison, A., Lee, V. & Gogers, M. (1990 a) Manipulation of the acute inflammatory response by dietary polyunsaturated fatty acid modulation. Journal of Immunology 145, 15231529.CrossRefGoogle ScholarPubMed
Lefkowith, J. B., Schreiner, G. F., Cormier, J., Handler, E. S., Driscoll, H., Greiner, D., Mordes, J. P. & Rossini, A. A. (1990 b). Prevention of diabetes in the BB rat by essential fatty acid deficiency: relationship between physiological and biochemical changes. Journal ofExperimenta1 Medicine 171, 729743.Google ScholarPubMed
Marra, M. N., Wilde, G. G., Griffith, J. E., Snable, J. L. & Scott, R. W. (1990). Bactericidal/permeability increasing protein has LPS neutralizing activity. Journal of Immunology 144, 622666.Google Scholar
Meydani, S. N., Meydani, M., Verdon, C. P., Shapiro, A. C., Blumberg, J. B. & Hayes, K. C. (1986). Vitamin E supplementation suppresses prostaglandin E, synthesis and enhances the immune response of aged mice. Mechanisms of Ageing and Development 34, 191201.CrossRefGoogle ScholarPubMed
Payan, D. G., Wong, M. Y., Chernov-Rogan, T., Valone, F. H., Picket, W. C., Blake, V. A., Gold, W. M. & Goetzl, E. J. (1986). Alterations in human leukocyte function induced by ingestion of eicosapentaenoic acid. Journal of Clinical Immunology 6, 402410.CrossRefGoogle ScholarPubMed
Ross, R. (1986). The pathogenesis of atherosclerosis – an update. New England Journal of Medicine 314, 488500.CrossRefGoogle ScholarPubMed
Satoh, J., Seino, H., Shintani, S., Tanaka, S.-I., Ohteki, T., Masuda, T., Nobunaga, T. & Toyota, T. (1990). Inhibition of type I diabetes in BB rats with recombinant human tumor necrosis factor-α. Journal of Immunology 145, 13961399.Google ScholarPubMed
Scales, W. E., Chensue, S. W., Otterness, I. & Kunkel, S. L. (1989). Regulation of monokine gene expression: prostaglandin E2, suppresses tumor necrosis factor but not interleukin- lα or β-mRNA and cell-associated bioactivity. Journal of Leukocyte Biology 45, 416421.CrossRefGoogle ScholarPubMed
Stark, J. M. & Jackson, S. K. (1990). Sensitivity to endotoxin is induced by increased membrane fatty-acid unsaturation and oxidant stress. Journal of Medical Microbiology 32, 211221.CrossRefGoogle ScholarPubMed
Sundram, K., Hornstra, G., van Houwelingen, A. C. & Kester, A. D. M. (1992). Replacement of dietary fat with palm oil: effect on human serum lipids, lipoproteins and apolipoproteins. British Journal of Nutrition 68, 677692.CrossRefGoogle ScholarPubMed
Sundram, K., Khor, H. T. & Ong, A. S. H. (1990). Effect of dietary palm oil and its fractions on rat plasma and high density lipoprotein lipids. Lipids 25, 187193.CrossRefGoogle ScholarPubMed
Tobias, P. S., Mathison, J. C. & Ulevitch, R. J. (1988). A family of Lipopolysaccharide Binding Proteins involved in responses to gram-negative sepsis. Journal of Biological Chemistry 27, 1347913481.CrossRefGoogle Scholar
Waymack, J. P., Moldawer, L. L., Lowry, S. F., Guzman, R. F., Okerberg, C. V., Mason, A. D. & Pruitt, B. A. (1990). Effect of prostaglandin E in multiple experimental models. IV. Effect on resistance to endotoxin and tumor necrosis factor shock. Journal of Surgical Research 49, 328332.CrossRefGoogle ScholarPubMed
Zabel, P., Wolter, D. T., Schönharting, M. M. & Schade, U. F. (1989). Oxypentifylline in endotoxaemia. Lancet i, 14741477.CrossRefGoogle Scholar