Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T02:14:05.690Z Has data issue: false hasContentIssue false

Effect of potato on acid–base and mineral homeostasis in rats fed a high-sodium chloride diet

Published online by Cambridge University Press:  08 March 2007

Agnés Narcy
Affiliation:
Unité des Maladies Meétaboliques et Micronutriments, Institut National de la Recherche Agronomique, Agronomique, Centre de Clermont- Ferrand/Theix, 63 122 Saint-Genés Champanelle, France
Laetitia Robert
Affiliation:
Unité des Maladies Meétaboliques et Micronutriments, Institut National de la Recherche Agronomique, Agronomique, Centre de Clermont- Ferrand/Theix, 63 122 Saint-Genés Champanelle, France
Andrzej Mazur
Affiliation:
Unité des Maladies Meétaboliques et Micronutriments, Institut National de la Recherche Agronomique, Agronomique, Centre de Clermont- Ferrand/Theix, 63 122 Saint-Genés Champanelle, France
Christian Demigné
Affiliation:
Unité des Maladies Meétaboliques et Micronutriments, Institut National de la Recherche Agronomique, Agronomique, Centre de Clermont- Ferrand/Theix, 63 122 Saint-Genés Champanelle, France
Christian Rémésy*
Affiliation:
Unité des Maladies Meétaboliques et Micronutriments, Institut National de la Recherche Agronomique, Agronomique, Centre de Clermont- Ferrand/Theix, 63 122 Saint-Genés Champanelle, France
*
*Corresponding author: Dr Christian Rémésy, fax +33 4 73 62 46 38, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Excessive dietary NaCl in association with a paucity of plant foods, major sources of K alkaline salts, is a common feature in Western eating habits which may lead to acid–base disorders and to Ca and Mg wasting. In this context, to evaluate the effects of potato, rich in potassium citrate, on acid–base homeostasis and mineral retention, Wistar rats were fed wheat starch (WS) or cooked potato (CP) diets with a low (0·5 %) or a high (2 %) NaCl content during 3 weeks. The replacement of WS by CP in the diets resulted in a significant urinary alkalinisation (pH from 5·5 to 7·3) parallel to a rise in citrate and K excretion. Urinary Ca and Mg elimination represented respectively 17 and 62% of the daily absorbed mineral in rats fed the high-salt WS diet compared with 5 and 28% in rats fed the high-salt CP diet. The total SCFA concentration in the caecum was 3-fold higher in rats fed the CP diets compared with rats fed the WS diets, and it led to a significant rise in Ca and Mg intestinal absorption (Ca from 39 to 56 %; Mg from 37 to 60 %). The present model of low-grade metabolic acidosis indicates that CP may be effective in alkalinising urine, enhancing citrate excretion and ameliorating Ca and Mg balance.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Ambuhl, PM, Zajicek, HK, Wang, H, Puttaparthi, K & Levi, MRegulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Kidney Int 1998 53, 12881298.CrossRefGoogle ScholarPubMed
Antoniou, LD, Eisner, GM, Slotkoff, LM & Lilienfield, LSRelationship between sodium and calcium transport in the kidney. J Lab Clin Med 1969 74, 410420.Google ScholarPubMed
Appel, LJ, Moore, TJ, Obarzanek, Eet al.. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 1997 336, 11171124.CrossRefGoogle ScholarPubMed
Aruga, S, Wehrli, S, Kaissling, B, Moe, OW, Preisig, PA, Pajor, AM & Alpern, RJChronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int 2000 58, 206215.CrossRefGoogle ScholarPubMed
Barzel, USAnion effects on calcium metabolism. J Bone Miner Res 1997 12, 298299.CrossRefGoogle ScholarPubMed
Brennan, S, Hering-Smith, K & Hamm, LLEffect of pH on citrate reabsorption in the proximal convoluted tubule. Am J Physiol 1988 255, F301F306.Google ScholarPubMed
Brunette, MG, Mailloux, J & Lajeunesse, DCalcium transport through the luminal membrane of the distal tubule. I. Interrelationship with sodium. Kidney Int 1992 41, 281288.CrossRefGoogle ScholarPubMed
Buclin, T, Cosma, M, , , Appenzeller, M, Jacquet, AF, Decosterd, LA, Biollaz, J & Burckhardt, PDiet acids and alkalis influence calcium retention in bone. Osteoporos Int 2001 12, 493499.CrossRefGoogle ScholarPubMed
Chan, EL & Swaminathan, RThe effect of high protein and high salt intake for 4 months on calcium and hydroxyproline excretion in normal and oophorectomized rats. J Lab Clin Med 1994 124, 3741.Google ScholarPubMed
Cohen, AJ & Roe, FJReview of risk factors for osteoporosis with particular reference to a possible aetiological role of dietary salt. Food Chem Toxicol 2000 38, 237253.CrossRefGoogle ScholarPubMed
Coudray, C, Demigne, C & Rayssiguier, YEffects of dietary fibers on magnesium absorption in animals and humans. J Nutr 2003 133, 14.CrossRefGoogle Scholar
Creedon, A & Cashman, KDThe effect of high salt and high protein intake on calcium metabolism, bone composition and bone resorption in the rat. Br J Nutr 2000 84, 4956.CrossRefGoogle ScholarPubMed
Dai, LJ, Friedman, PA & Quamme, GAAcid-base changes alter Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 1997 272, F759F766.Google ScholarPubMed
Dai, LJ, Ritchie, G, Kerstan, D, Kang, HS, Cole, DE & Quamme, GAMagnesium transport in the renal distal convoluted tubule. Physiol Rev 2001 81, 5184.CrossRefGoogle ScholarPubMed
Eaton, SB, Eaton, SB III & Konner, MJPaleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr 1997 51, 207216.CrossRefGoogle ScholarPubMed
Eaton, SB, Eaton, SB III, Konner, MJ & Shostak, MAn evolutionary perspective enhances understanding of human nutritional requirements. J Nutr 1996 126, 17321740.CrossRefGoogle ScholarPubMed
Frassetto, LA, Morris, RC Jr & Sebastian, AEffect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. Am J Physiol 1996 271, F1114F1122.Google ScholarPubMed
Frassetto, L, Morris, RC Jr, Sellmeyer, DE, Todd, K & Sebastian, ADiet, evolution and aging – the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr 2001 40, 200213.CrossRefGoogle ScholarPubMed
Frassetto, LA, Nash, E, Morris, RC Jr & Sebastian, AComparative effects of potassium chloride and bicarbonate on thiazideinduced reduction in urinary calcium excretion. Kidney Int 2000 58, 748752.CrossRefGoogle ScholarPubMed
Ginty, F, Flynn, A & Cashman, KDThe effect of dietary sodium intake on biochemical markers of bone metabolism in young women. Br J Nutr 1998 79, 343350.CrossRefGoogle ScholarPubMed
Goulding, A & Gold, EEffects of dietary sodium chloride loading on parathyroid function, 1,25-dihydroxyvitamin D, calcium balance, and bone metabolism in female rats during chronic prednisolone administration. Endocrinology 1986 119, 21482154.CrossRefGoogle Scholar
Harvey, JA, Zobitz, MM & Pak, CYCalcium citrate: reduced propensity for the crystallization of calcium oxalate in urine resulting from induced hypercalciuria of calcium supplementation. J Clin Endocrinol Metab 1985 61, 12231225.CrossRefGoogle ScholarPubMed
Itoh, R & Suyama, YSodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population. Am J Clin Nutr 1996 63, 735740.CrossRefGoogle Scholar
Kurtz, TW & Morris, RC JrDietary chloride as a determinant of disordered calcium metabolism in salt-dependent hypertension. Life Sci 1985 36, 921929.CrossRefGoogle ScholarPubMed
Lemann>, JRelationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: a review. Nephron 1999 81, Suppl. 1, 1825.CrossRefGoogle ScholarPubMed
Lemann, J Jr, Gray, RW & Pleuss, JAPotassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balance in healthy men. Kidney Int 1989 35, 688695.CrossRefGoogle ScholarPubMed
Lemann, J Jr, Pleuss, JA, Gray, RW & Hoffmann, RGPotassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults [corrected]. Kidney Int 1991 39, 973983.CrossRefGoogle ScholarPubMed
Lietz, G, Avenell, A & Robins, SPShort-term effects of dietary sodium intake on bone metabolism in postmenopausal women measured using urinary deoxypyridinoline excretion. Br J Nutr 1997 78, 7382.CrossRefGoogle Scholar
Lutz, T & Scharrer, EEffect of short-chain fatty acids on calcium absorption by the rat colon. Exp Physiol 1991 76, 615618.CrossRefGoogle ScholarPubMed
Macdonald, HM, New, SA, Fraser, WD, Campbell, MK & Reid, DMLow dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 2005 81, 923933.CrossRefGoogle ScholarPubMed
Macdonald, HM, New, SA, Golden, MH, Campbell, MK & Reid, DMNutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 2004 79, 155165.CrossRefGoogle ScholarPubMed
Marangella, M, Di Stefano, M, Casalis, S, Berutti, S, D'Amelio, P & Isaia, GCEffects of potassium citrate supplementation on bone metabolism. Calcif Tissue Int 2004 74, 330335.CrossRefGoogle ScholarPubMed
Massey, LK & Whiting, SJDietary salt, urinary calcium, and bone loss. J Bone Miner Res 1996 11, 731736.CrossRefGoogle ScholarPubMed
Mathers, JC & Dawson, LDLarge bowel fermentation in rats eating processed potatoes. Br J Nutr 1991 66, 313329.CrossRefGoogle ScholarPubMed
Matkovic, V, Ilich, JZ, Andon, MB, Hsieh, LC, Tzagournis, MA, Lagger, BJ & Goel, PKUrinary calcium, sodium, and bone mass of young females. Am J Clin Nutr 1995 62, 417425.CrossRefGoogle ScholarPubMed
Maurer, M, Riesen, W, Muser, J, Hulter, HN & Krapf, RNeutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am J Physiol 2003 284, F32F40.Google ScholarPubMed
Melnick, JZ, Preisig, PA, Moe, OW, Srere, P & Alpern, RJRenal cortical mitochondrial aconitase is regulated in hypo- and hypercitraturia. Kidney Int 1998 54, 160165.CrossRefGoogle ScholarPubMed
Melnick, JZ, Srere, PA, Elshourbagy, NA, Moe, OW, Preisig, PA & Alpern, RJAdenosine triphosphate citrate lyase mediates hypocitraturia in rats. J Clin Invest 1996 98, 23812387.CrossRefGoogle ScholarPubMed
Meschi, T, Maggiore, U, Fiaccadori, E, Schianchi, T, Bosi, S, Adorni, G, Ridolo, E, Guerra, A, Allegri, F, Novarini, A & Borghi, LThe effect of fruits and vegetables on urinary stone risk factors. Kidney Int 2004 66, 24022410.CrossRefGoogle ScholarPubMed
Morris, RC Jr, Schmidlin, O, Tanaka, M, Forman, A, Frassetto, L & Sebastian, ADiffering effects of supplemental KCl and KHCO3: pathophysiological and clinical implications. Semin Nephrol 1999 19, 487493.Google ScholarPubMed
Nellans, HN & Goldsmith, RSTransepithelial calcium transport by rat cecum: high-efficiency absorptive site. Am J Physiol 1981 240, G424G431.Google ScholarPubMed
New, SAIntake of fruit and vegetables: implications for bone health. Proc Nutr Soc 2003 62, 889899.CrossRefGoogle ScholarPubMed
New, SA, Bolton-Smith, C, Grubb, DA & Reid, DMNutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 1997 65, 18311839.CrossRefGoogle Scholar
Pajor, AMSodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 1999 61, 663682.CrossRefGoogle ScholarPubMed
Prynne, CJ, Ginty, F, Paul, AA, Bolton-Smith, C, Stear, SJ, Jones, SC & Prentice, ADietary acid-base balance and intake of bone-related nutrients in Cambridge teenagers. Eur J Clin Nutr 2004 58, 1558.CrossRefGoogle ScholarPubMed
Remer, T & Manz, FPotential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 1995 95, 791–47.CrossRefGoogle ScholarPubMed
Remesy, C & Demigne, CDetermination of volatile fatty acids in plasma after ethanolic extraction. Biochem J 1974 141, 8591.CrossRefGoogle ScholarPubMed
Ruano-Ravina, A, Figueiras, A, Dosil-Diaz, O, Barreiro-Carracedo, A & Barros-Dios, JMA population-based case-control study on fruit and vegetable intake and lung cancer: a paradox effect?. Nutr Cancer 2002 43, 4751.CrossRefGoogle ScholarPubMed
Sabboh, H, Horcajada, MN, Coxam, V, Tressol, JC, Besson, C, Rémésy, C & Demigné, CEffect of potassium salts in rats adapted to an acidogenic high-sulfur amino acid diet. Br J Nutr 2005 94, 17.CrossRefGoogle Scholar
Sakhaee, K, Alpern, R, Jacobson, HR & Pak, CYContrasting effects of various potassium salts on renal citrate excretion. J Clin Endocrinol Metab 1991 72, 396400.CrossRefGoogle ScholarPubMed
Sebastian, A, Frassetto, LA, Sellmeyer, DE, Merriam, RL & Morris, RC JrEstimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am J Clin Nutr 2002 76, 13081316.CrossRefGoogle ScholarPubMed
Sebastian, A, Harris, ST, Ottaway, JH, Todd, KM & Morris, RC JrImproved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 1994 330, 17761781.CrossRefGoogle ScholarPubMed
Sellmeyer, D, Schloetter, M & Sebastian, APotassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab 2002 87, 20082012.CrossRefGoogle ScholarPubMed
Shortt, C & Flynn, ASodium-calcium inter-relationships with specific reference to osteoporosis. Nutr Res Rev 1990 3, 101115.CrossRefGoogle ScholarPubMed
Shortt, C & Flynn, AEffect of dietary lactose on salt-mediated changes in mineral metabolism and bone composition in the rat. Br J Nutr 1991 66, 7381.CrossRefGoogle ScholarPubMed
Simpson, DPCitrate excretion: a window on renal metabolism. Am J Physiol 1983 244, F223F234.Google ScholarPubMed
Trinidad, P, Wolever, T & Thompson, LInteractive effects of calcium and short chain fatty acids on absorption in the distal colon of man. Nutr Res Rev 1993 13, 417425.CrossRefGoogle Scholar
Tucker, KL, Hannan, MT, Chen, H, Cupples, LA, Wilson, PWF & Kiel, DPPotassium, magnesium and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 1999 69, 727736.CrossRefGoogle ScholarPubMed
Vormann, J & Daniel, HThe role of nutrition in human acidbase homeostasis. Eur J Nutr 2001 40, 187188.Google ScholarPubMed
Whiting, SJ & Cole, DEEffect of dietary anion composition on acid-induced hypercalciuria in the adult rat. J Nutr 1986 116, 388394.CrossRefGoogle ScholarPubMed
Wiederkehr, M & Krapf, RMetabolic and endocrine effects of metabolic acidosis in humans. Swiss Med Wkly 2001 131, 127132.Google ScholarPubMed
Yeh, BI, Sun, TJ, Lee, JZ, Chen, HH & Huang, CLMechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J Biol Chem 2003 278, 5104451052.CrossRefGoogle ScholarPubMed