Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T02:36:40.687Z Has data issue: false hasContentIssue false

The effect of lowered environmental temperature on lipid metabolism in rats fed on normal and high-fat, high-cholesterol diets

Published online by Cambridge University Press:  09 March 2007

P. Bobek
Affiliation:
Laboratory Department of the Institute of Human Nutrition Research, Bratislava, Czechoslovakia
E. Ginter
Affiliation:
Laboratory Department of the Institute of Human Nutrition Research, Bratislava, Czechoslovakia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Prolonged intermittent exposure to reduced environmental temperature (+2°) produced in rats given a nutritionally well-balanced diet a decrease in the concentration of esterified fatty acids in the blood serum, liver and epididymal fat tissue. In the last there was a significant increase in the unesterified: esterified fatty acid ratio. The hepatic synthesis of fatty acids from [1–14C]acetate remained unchanged. A decrease in the concentration of cholesterol was found in the blood serum, liver and lungs of animals exposed to cold.

2. When a high-fat, high-cholesterol diet was given, exposure to cold increased the mobilization of lipids; this was indicated by the elevation of the unesterified fatty acid levels in the blood serum and in the epididymal fat tissue. In rats given the high-fat diet the lipotropic action of cold on the liver was confirmed. This action was characterized by a decrease of esterified fatty acid levels and by an increase of glycogen concentration in the liver. This effect is probably due to a lowering of hepatic lipogenesis and to increased oxidation of fatty acids in the liver tissue. In rats given the high-fat dict, cold exposure produced an increased cholesterol accumulation in the tissues and more pronounced morphological changes in the myocardium.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

Bobek, P. & Ginter, E. (1965). Biológia, Bratisl. 20, 537.Google Scholar
Cottle, W. H. & Carlson, L. D. (1956). Proc. Soc.exp. Biol. Med. 92, 845.CrossRefGoogle Scholar
Denyes, A. & Carter, J. D. (1961). Am. J. Physiol. 200, 1043.CrossRefGoogle Scholar
Denyes, A. & Hasset, J. (1960). Bull. Mus. comp. Zool. Harv. 124, 437.Google Scholar
Depocas, F. (1962). Am. J. Physiol. 202, 1015.CrossRefGoogle Scholar
Fáabry, P. (1955). Čslká. Fysiol. 4, 1.Google Scholar
Felts, J. M. & Masoro, E. J. (1959). Am. J. Physiol. 197, 34.CrossRefGoogle Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957).J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Good, C. A., Kramer, H. & Somogyi, M. (1933).J. biol. Chem. 100, 485.CrossRefGoogle Scholar
Gordon, R. S. Jr. (1960). Fedn Proc. Fedn Am. Socs exp. Biol. 19, Suppl. 5, p. 120.Google Scholar
Hannon, J. P. (1959). Am. J. Physiol. 196, 890.CrossRefGoogle Scholar
Hořejši, J. (1964). Základy chemického všetřováni vlékařstvi, p. 399. Prague: State Health Publishing House.Google Scholar
Kaufman, N., Gavan, T. L. & Hill, R. V. (1958). Archs Path. 66, 96.Google Scholar
Lianides, S. P. & Beyer, R. E. (1960). Am. J. Physiol. 199, 836.CrossRefGoogle Scholar
Mallov, S. (1963). Am. J. Physiol. 204, 157.CrossRefGoogle Scholar
Mallov, S. & Witt, P. N. (1960). J. Pharmac. exp. Ther. 132, 126.Google Scholar
Masoro, E. J. & Felts, J. N. (1959).J. biol. Chem. 234, 198.CrossRefGoogle Scholar
Masoro, E. J., Cohen, I. A. & Panagos, S. S. (1955). Am. J. Physiol. 180, 341.CrossRefGoogle Scholar
Mefferd, R. B. Jr., Nyman, M. A. & Webster, W. W. (1958). Am. J. Physiol. 195, 744.CrossRefGoogle Scholar
Novák, M. (1961).Cslká. Fysiol. 10 423.Google Scholar
Schönbaum, E., Sellers, E. A. & Rimmer, A. (1962). Fedn Proc. Fedn Am. Socs exp. Biol. 21, 220.Google Scholar
Sellers, E. A. & Baker, D. G. (1960). Can. med. Ass. J. 83, 6.Google Scholar
Sellers, E. A. & You, R. W. (1956). Br. med. J. i, 815.CrossRefGoogle Scholar
Smith, E. R. (1962).J. Am. med. Ass. 179, 948.Google Scholar
Sodeman, W. A. & Logue, J. T. (1960). Proc. Soc.exp. Biol. Med. 103, 255.CrossRefGoogle Scholar
Sperry, W. M. & Webb, M. (1950).J. biol. Chem. 187, 97.CrossRefGoogle Scholar
Stern, J. & Shapiro, B. (1953). J. clin. Path. 6, 158.CrossRefGoogle Scholar
Stewart, C. P. & Hendry, E. B. (1935). Biochem. J. 29, 1683.CrossRefGoogle Scholar
Swahn, B. (1953). Scand. J. clin. Lab. Invest. 9, suppl. 5, p. 1.Google Scholar
Treadwell, C. R., Flick, D. F. & Vahouny, G. V. (1955). Fedn Proc. Fedn Am. Socs exp. Biol. 14, 452.Google Scholar
Treadwell, C. R., Flick, D. F. & Vahouny, G. V. (1957). J. Nutr. 63, 611.CrossRefGoogle Scholar
Treadwell, C. R., Flick, D. F. & Vahouny, G. V. (1958). Proc. Soc.exp. Biol. Med. 97, 434.CrossRefGoogle Scholar
Tretyakova, K. A. & Grozdensky, D. E. (1959). Vop med. Khim. 5, 362.Google Scholar
van de Kamer, J. H., Huinink, ten B. & Weyers, H. A. (1949).J. biol. Chem. 177, 347.CrossRefGoogle Scholar
Wilgram, G. F. (1959).J. exp. Med. 109. 293.CrossRefGoogle Scholar
Young, D. R. & Cook, S. F. (1955). Am. J. Physiol. 181, 72.CrossRefGoogle Scholar