Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T07:56:23.388Z Has data issue: false hasContentIssue false

The effect of long-term feeding of soya-bean flour diets on pancreatic growth in the rat

Published online by Cambridge University Press:  24 July 2007

Rosa A. Crass
Affiliation:
Department of Physiology, University of Western Australia, Nedlands, 6009, Western Australia, Australia
R. G. H. Morgan
Affiliation:
Department of Physiology, University of Western Australia, Nedlands, 6009, Western Australia, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Pancreatic growth was measured in rats by changes in pancreatic weight, nucleic acid content and protein content after feeding diets of heated soya-bean flour (HSF), raw soya-bean flour (RSF), 200 g raw soya-bean flour+800 g heated soya-bean flour/kg (80 HSF) and 400 g raw soya-bean flour+600 g heated soya-bean flour/kg (60 HSF) for periodsup to 36 weeks. Control rats of comparable age to soya-bean flour-fed rats were continuedon rat cubes during the 36-week study.

2. Cube-fed rats remained significantly heavier than rats fed on soya-bean flour diets. Analysis of variance showed rats fed on HSF were significantly heavier than RSF-fed rats and rats fed on 80 HSF significantly heavier than those fed on 60 RSF.

3. Pancreatic indices in HSF-fed rats were similar to comparable control rats.

4. Hypertrophy was found in rats fed on the RSF-containing diets with the extent of enlargement corresponding to the RSF content. Hyperplasia was also found in rats fed on RSFand 60 HSF.

5. The greatest pancreatic growth was seen in RSF-fed rats with all the indices peaking at 8 weeks followed by a decline and then a rise again at 36 weeks.

6. The fall in pancreatic indices in rats fed on RSF for 12 and 24 weeks is most likely an effect of general malnutrition due to the multiple deficiences in amino acids which occur in animals fed on RSF. The rise at 36 weeks may reflect increased body growth or the beginning of adenornatous changes.

Type
Paper on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Barnes, R. H., Fiala, G. & Kwong, E. (1965). J. Nutr. 85, 127.Google Scholar
Beswick, I. P., Pirola, R. C. & Bouchier, I. A. D. (1971). Br. J. exp. Path. 52, 252.Google Scholar
Booth, A. N., Robbins, D. J., Ribelin, W. E. & DeEds, F. (1960). Proc. Soc. expl. Biol. Med. 104, 681.Google Scholar
Booth, A. N., Robbins, D. J., Ribelin, W. E., DeEds, F., Smith, A. K. & Rackis, J. J. (1964). Proc. Soc. expl. Biol. Med. 116, 1067.Google Scholar
Bourdel, G., Girard-Globa, A. & Forestier, M. (1971). Lab. Invest. 25, 331.Google Scholar
Bredenkamp, B. L. F. & Luck, D. N. (1969). Proc. Soc. expl Biol. Med. 132, 537.Google Scholar
Chernick, S. S., Lepkovsky, S. & Chaikoff, I. L. (1948). Am. J. Physiol. 155, 33.Google Scholar
Dockray, G. J. (1972). J. Physiol., Lond. 225, 679.Google Scholar
Fölsch, U. R., Winckler, K. & Wormsley, K. G. (1974). Digestion, 11, 161.CrossRefGoogle Scholar
Fölsch, U. R. & Wormsley, K. G. (1974). Scand. J. Gastroenterol. 9, 679.Google Scholar
Haines, P. C. & Lyman, R. L. (1961). J. Nutr. 74, 445.Google Scholar
Hatcher, D. W. & Goldstein, G. (1969). Analyt. Biochem. 31, 42.CrossRefGoogle Scholar
Hayward, J. W. & Hafner, F. H. (1941). Poultry Sci. 20, 139.Google Scholar
Hutchison, W. C. & Munro, H. N. (1961). Analyst, Lond. 86, 768.Google Scholar
Johnson, L. R. (1976). Gastroenterology 70, 278.Google Scholar
Kakade, M. L., Simons, N. R. & Liener, I. E. (1969). Cereal Chem. 46, 518.Google Scholar
Konijn, A. M. & Guggenheim, K. (1967). Proc. Soc. expl Biol. Med. 126, 65.Google Scholar
Levison, D. A., Morgan, R. G. H., Brimacombe, J. S., Hopwood, D., Coghill, G. & Wormsley, K. G. (1979). Scand. J. Gastroenterol. 14, 217.Google Scholar
McGuinness, E. E., Morgan, R. G. H., Levison, D. A., Frape, D. L., Hopwood, D. & Wormsley, K. G. (1980). Scand. J. Gastroenterol. 15, 497.Google Scholar
Madar, J. & Klein, M. (1979). Nutr. Metab. 23, 117.Google Scholar
Melmed, R. N., El Aaser, A. A. A. & Holt, J. J. (1976). Biochim. biophys. Acta 421, 280.Google Scholar
Morgan, R. G. H., Levison, D. A., Hopwood, D., Saunders, J. H. B. & Wormsley, K. G. (1977). Cancer Letters 3, 87.Google Scholar
Munro, H. N. & Fleck, A. (1966). Analyst, Lond. 91, 78.Google Scholar
Rackis, J. J. (1965). Fedn Proc. Fedn Am. Socs exp. Biol. 24, 1488.Google Scholar
Richards, C., Fitzgerald, P. J., Carol., B., Rosenstock, L., Lipkin, L. (1964). Lab. Invest. 13, 1303.Google Scholar
Salman, M. H., Pubols, M. H. & McGinnis, J. (1968). Proc. Soc. expl Biol. Med. 128, 258.CrossRefGoogle Scholar
Saxena, H. C., Jensen, L. S., McGinnis, J. & Lauber, J. K. (1963). Proc. Soc. expl. Biol. Med. 112, 390.Google Scholar
Schacterle, G. R. & Pollack, R. L. (1973). Analyt. Biochem. 51, 654.CrossRefGoogle Scholar
Scott, E. B. & Vermillion, S. D. (1966). Archs Path. 82, 119.Google Scholar
Sidransky, H. & Farber, E. (1958). Archs Path. 66, 119.Google Scholar