Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T00:01:11.815Z Has data issue: false hasContentIssue false

Effect of leucine at different levels of pyridoxine on hepatic quinolinate phosphoribosyl transferase (EC 2.4.2.19) and leucine aminotransferase (EC 2.6.1.6) in rats

Published online by Cambridge University Press:  24 July 2007

Kamala Krishnaswamy
Affiliation:
National Institute of Nutrition, Indian Council of Medical Research, Jamai-Osmania, Hyderabad-500 007, India
S. Bapurao
Affiliation:
National Institute of Nutrition, Indian Council of Medical Research, Jamai-Osmania, Hyderabad-500 007, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Effects of incorporating 30 g leucine/kg into diets on quinolinate phosphoribosyl transferase (QPRT; EC 2.4.2.19) activity and leucine aminotransferase (EC 2.6.1.6) activity were studied in groups of rats receiving 5, 30 and 60 μg of pyridoxine/10 g diet.

2. The results indicated that 30 g leucine/kg diet significantly reduced the QPRT activity when the diets provided 5 μg pyridoxine/10 g and that the effect was only marginal when the diet included 30 μg pyridoxine/ 10 g. The inhibitory effect was completely absent when the diet provided higher amounts of pyridoxine (60 μg/10g).

3. These results suggest that additional amounts of pyridoxine are necessary to counteract the effects of excess of leucine in the diet.

4. Leucine aminotransferase activity was increased in rats given diets containing higher amounts of pyridoxine; supplementary leucine also increased the enzyme activity.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Bapurao, S. (1975). Studies on vitamin B6. Ph.D. Thesis, Osmania University, Hyderabad, India.Google Scholar
Bapurao, S., Raghuram, T. C. & Krishnaswamy, K. (1975). Nutr. Metab. 18, 318.Google Scholar
Belavady, B., Srikantia, S. G. & Gopalan, C. (1963). Biochem. J. 87, 652.CrossRefGoogle Scholar
Brown, R. R., Yess, N., Price, J. M., Linkswiler, H., Swan, P. & Hankes, L. V. (1965). J. Nutr. 87. 419.CrossRefGoogle Scholar
Ghafoorunissa, & Narasinga Rao, B. S. (1973). Biochem. J. 135, 425.CrossRefGoogle Scholar
Gholson, R. K., Ueda, I., Ogasawara, N. & Henderson, L. M. (1964). J. biol. Chem. 239, 1208.CrossRefGoogle Scholar
Kelsay, J., Miller, L. T. & Linkswiler, H. (1968). J. Nutr. 94, 27.CrossRefGoogle Scholar
Knox, W. E. & Greengard, O. (1965). Adv. Enzym. Res. 3, 247.CrossRefGoogle Scholar
Krishnaswamy, K., Bapurao, S., Raghuram, T. C. & Srikantia, S. G. (1976). Am. J. clin. Nutr. 29, 177.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Nishizuka, Y. & Nakamura, S. (1970). Meth. Enzymol. 17A, 491.CrossRefGoogle Scholar
Orr, M. L. (1969). Home Econ. Res. Dept. Rep. no. 36, Agri. Res. Ser. U.S. Dept. Agric.Google Scholar
Raghuramulu, N., Narasinga Rao, B. S. & Gopalan, C. (1965). J. Nutr. 86, 100.CrossRefGoogle Scholar
Rose, D. P. & Toseland, R. A. (1973). Metabolism 22, 165.CrossRefGoogle Scholar
Shiflett, J. M. & Haskell, B. E. (1969). Fedn. Proc. Fedn. Am. Socs. exp. Biol. 28, 560.Google Scholar
Taguchi, H. & Iwai, K. (1974). J. Nutr. Sci. Vitam. 20, 283.CrossRefGoogle Scholar
Taylor, R. T. & Jenkins, W. T. (1966). J. biol. Chem. 241, 4391.CrossRefGoogle Scholar