Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T05:22:59.022Z Has data issue: false hasContentIssue false

Effect of human faecal inoculum on in vitro fermentation variables

Published online by Cambridge University Press:  09 March 2007

M. I. McBurney
Affiliation:
Department of Nutritional Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
L. U. Thompson
Affiliation:
Department of Nutritional Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Homogenized and diluted faeces (66.6 g/l) collected from one human source on three different months was incubated with four standard substrates (oat bran, wheat bran, red kidney beans (Phuseolus vulgaris) and guar gum) for 4, 8, 12 and 24 h.

2. Neutral-detergent fibre and organic matter (OM) digestibility measurements and gas production (ml gas/g OM) were influenced by substrate and incubation period but not by day of collection.

3. Production of short-chain fatty acids (SCFA) (mmol/g OM) was a function of substrate and incubation period but not day of collection at 4, 8 and 12 h. Rapidly fermentable substrates such as red kidney beans and guar gum did not ferment beyond 12 h and SCFA values were not different at 24 h.

4. Substrates differed in amount, rate and type of SCFA produced.

5. The results indicate that human faeces collected on different occasions were sufficiently uniform to yield similar in vitro fermentation findings among collections. Therefore, it is concluded that human faecal material is a practical source of micro-organisms to evaluate the fermentation properties of substrates.

Type
Clinical and Human Nutrition papers: Other Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Anderson, J. W. & Bridges, S. R. (1982). American Journal of Clinical Nutrition 35, 840.Google Scholar
Association of Official Analytical Chemists (1984). Official Methods of Analysis, 14th ed, pp. 153157 [Williams, S., editor]. Arlington: Association of Official Analytical Chemists, Inc.Google Scholar
Bjorke, J. T., Soergel, K. H. & Wood, C. M. (1976). Gastroenterology 70, A/6/864.Google Scholar
Chen, W.-J., Anderson, J. W. & Jennings, D. (1984). Proceedings of the Society for Experimental Biology and Medicine 175, 215218.Google Scholar
Croucher, S. C., Houston, A. P., Bayliss, C. E. & Turner, R. J. (1983). Applied and Environmental Microbiology 45, 10251033.Google Scholar
Cummings, J. H. (1983). Lancet i, 12061209.Google Scholar
Cummings, J. H. (1984). Scandinavian Journal of Gastroenterology 19, 8999.Google Scholar
Cummings, J. H., Hill, M. J., Bone, E. S., Branch, W. J. & Jenkins, D. J. A. (1979). American Journal of Clinical Nutrition 32, 20942101.CrossRefGoogle Scholar
Demigne, C. & Remesy, C. (1985). Journal of Nutrition 115, 5360.CrossRefGoogle Scholar
Doyle, R. B., Wolfman, M., Varso, D. & Floch, M. H. (1981). American Journal of Clinical Nutrition 34, 635.Google Scholar
Drasar, B. S. & Jenkins, D. J. A. (1976). American Journal of Clinical Nutrition 29, 14101414.Google Scholar
Drasar, B. S., Jenkins, D. J. A. & Cummings, J. H. (1976). Journal of Medical Microbiology 9, 423431.Google Scholar
Edwards, C. A., Duerden, B. I. & Read, N. W. (1985). Gastroenterology 88, 19031909.CrossRefGoogle Scholar
Englyst, H. N. & Macfarlane, G. T. (1986). Journal of the Science of Food and Agriculture 31, 699706.CrossRefGoogle Scholar
Fleming, S. E. & Rodriguez, M. A. (1983). Journal of Nutrition 113, 16131625.Google Scholar
Flatt, W. P., Warner, R. G. & Loosli, J. K. (1959). Journal of Dairy Science 41, 15931600.Google Scholar
Flourie, B., Florent, C., Jouany, J.-P., Thivend, P., Etanchaud, F. & Rambaud, J.-C. (1986). Gastroenterology 19, 111119.CrossRefGoogle Scholar
Fuchs, H.–M., Dorfman, S. & Floch, M. H. (1976). American Journal of Clinical Nutrition 29, 14431447.Google Scholar
Goering, H. K. & Van soest, P. J. (1970). Forage Fiber Analysis (Apparatus, Reagents, Procedures and some Applications). Agriculture Handbook no. 379. Washington, DC: USDA.Google Scholar
Gray, G. & Olson, A. C. (1985). Journal of Agricultural and Food Chemistry 33, 192195.Google Scholar
Hoverstad, T. (1986). Scandinavian Journal of Gastroenterology 21, 257260.Google Scholar
Jacobs, L. R. & Lupton, J. R. (1984). American Journal of Physiology 246, G378–G385.Google Scholar
Jacobs, L. R. & White, F. A. (1983). American Journal of Clinical Nutrition 37, 945953.Google Scholar
Jeraci, J. L. (1981). Interactions between rumen and human fecal inocula and fiber substrates. MSc Thesis, Cornell University, Ithaca, New York.Google Scholar
Kim, Y. S., Tsao, D., Morita, A. & Bella, A. (1981). In Colonic Carcinogenesis, pp. 317323 [Malt, R. A. and Williamson, R. C. N., editors ]. Falk Symposium no. 31. Lancaster: MTPGoogle Scholar
Krevsky, B., Malmud, L. S., D'ecole, F., Maurer, A. H. & Fisher, R. S. (1986). Gastroenterology 91, 11021112.CrossRefGoogle Scholar
Kruh, J. (1982). Molecular and Cellular Biochemistry 42, 6582.Google Scholar
Low, A. G. (1985). In Recent Advances of Animal Nutrition, pp. 87111 [Haversig, W., editor ]. London: Butterworths.Google Scholar
McBurney, M. I., Allen, M. S. & Van Soest, P. J. (1986). Journal of the Science of Food and Agriculture 37, 666672.CrossRefGoogle Scholar
McBurney, M. I., Horvath, P. J., Jeraci, J. L. & Van Soest, P. J. (1985). British Journal of Nutrition 53, 1724.CrossRefGoogle Scholar
Macfarlane, G. T., Cummings, J. H. & Allison, C. (1986). Journal of General Microbiology 132, 16471656.Google Scholar
Macfarlane, G. T. & Englyst, H. N. (1986). Journal of Applied Bacteriology 60, 195201.Google Scholar
Marlett, J. A. & Johnson, E. J. (1985). Journal of Nutrition 115, 650660.Google Scholar
Mayer, A. (1986). Physiological effects of colonically derived short chain fatty acids. MSc Thesis, University of Toronto, Toronto, Ontario.Google Scholar
Mertens, D. R. (1973). Application of theoretical mathematical models to cell wall digestion and forage intake in ruminants. PhD Thesis, Cornell University, Ithaca, New York.Google Scholar
Miller, T. L. & Wolin, M. J. (1974). Applied Microbiology 27, 985987.Google Scholar
Miller, T. L. & Wolin, M. J. (1981). Applied and Environmental Microbiology 42, 400407.Google Scholar
Moore, W. E. C., Cato, E. P. & Holdeman, L. V. (1978). American Journal of Clinical Nutrition 31, S33–S42.CrossRefGoogle Scholar
Perman, J. A, Modler, S. & Olsen, A. C. (1981). Journal of Clinical Investigations 67, 643650.CrossRefGoogle Scholar
Pomare, E. W., Branch, W. J. & Cummings, J. H. (1985). Journal of Clinical Investigations 75, 14481454.Google Scholar
Prosky, L., Asp, N., Furda, I., DeVries, J. W., Schweizer, T. F. & Harland, B. F. (1986). Journal of the Association of Official Analytical Chemists 68, 399.Google Scholar
Robertson, J. B. & Van soest, P. J. (1982). In The Analysis of Dietary Fiber in Food, pp 123158 [James, W. P. T. and Theander, O., editors]New York: Marcel Dekker.Google Scholar
Rubenstein, R., Howard, A. V. & Wrong, O. M. (1969). Clinical Sciences 37, 549564.Google Scholar
Sander, E. G., Warner, R. S., Harrison, H. N. & Loosli, J. K. (1959). Journal of Dairy Science 42, 16001605.Google Scholar
Smith, A. N. & Eastwood, M. A. (1980). In Medical Aspects of Dietary Fiber, pp. 2742 [Spiller, G. A. and Kay, R. M., editors]. New York: Plenum Medical Book Co.Google Scholar
Spiller, G. A, Chernoff, M. C., Hill, R. A., Gates, J. E., Nassar, J. J. & Shipley, E. A. (1980). American Journal of Clinical Nutrition 33, 754759.CrossRefGoogle Scholar
Tomlin, J., Read, N. W., Edwards, C. A. & Duerden, B. I. (1986). British Journal of Nutrition 55, 481486.Google Scholar
Walters, R. L., Baird, I. M., Davies, P. S., Hill, M. J., Drasar, B. S., Southgate, D. A. T., Green, J. & Morgan, B. (1975). British Medical Journal ii, 536538.CrossRefGoogle Scholar